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connection can be exactly computed using the constraints from N = (4, 4) supersymmetry.

Its curvature can be determined using the tt∗ equations, for which we give a derivation

in the physical theory which does not rely on the topological twisting. We show that for

N = (4, 4) theories the chiral ring is covariantly constant over the moduli space, a fact

which can be seen as a non-renormalization theorem for the three-point functions of chiral

primaries in AdS3/CFT2. From the spacetime point of view our analysis has the follow-

ing applications. First, in the case of a D1/D5 black string, we can see the matching of
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1 Introduction

The AdS3/CFT2 correspondence [1] is one of the best understood holographic dualities

and has been very useful for the analysis of black holes in string theory. While it has been

studied in great detail by now, most of the computations have been performed in special

weakly-coupled limits. The AdS3/CFT2 is characterized by a parameter space M which

corresponds to the expectation values of the scalar fields in the bulk, or equivalently to the

position on the moduli space of the boundary CFT. There are special points on M where

the boundary CFT is weakly coupled and others where the holographic dual string theory

is in the perturbative regime. At a generic point on M, none of the two descriptions is

weakly coupled and it is difficult to make any explicit computations. Is there anything we

can say about the theory in the interior of its moduli space?

In this paper, whenever we speak of the AdS3/CFT2 correspondence, we will have

the duality between type IIB on AdS3×S3×X4 and suitable N = (4, 4) superconformal

field theories in mind. These CFT’s are believed to be related to a sigma model whose

target space is a deformation of the symmetric product XN/SN , where X = T 4 or K3.

This is a hyperkähler space and such sigma models are indeed compatible with N = (4, 4)

sypersymmetry. It is a natural assumption that at all points on M the theory has a

boundary description in terms of an N = (4, 4) superconformal field theory, which may

be strongly coupled. Such theories have a sector protected by supersymmetry, the chiral

– 1 –
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ring [2], which can be studied exactly even away from the weak-coupling limits. In this

paper we analyze the moduli dependence of the chiral ring of N = (4, 4) superconformal

field theories, mainly motivated by its relevance for the boundary CFT that appears in the

AdS3/CFT2 correspondence. Our analysis is exact everywhere on the moduli space, since

we only assume that the N = (4, 4) superconformal structure of the theory is preserved

and that generically the number of chiral primaries does not jump as we move on M. This

allows us to make some exact statements about the theory in the regime of strong coupling

and for finite N .

The chiral ring of a superconformal field theory depends on the moduli in two ways.

First, the chiral primaries mix among themselves as we change the parameters of the theory.

Technically this means that the chiral primary operators are sections of vector bundles over

the moduli space, which can have nontrivial curvature. Second, the multiplication between

the chiral primaries, expressed in terms of the structure constants Cijk, may also be moduli

dependent. Supersymmetry imposes strong constraints on the structure of the chiral ring

and the way it behaves under a change of the coupling constants. The case of N = (2, 2)

superconformal theories has been extensively studied and the supersymmetry constraints

are expressed in terms of the tt∗ equations

Rij ≡ [∇i,∇j] ≃ −[Ci, Cj ] (1.1)

which give the curvature of the bundles of chiral primaries in terms of the chiral ring

coefficients. These equations were originally derived by Cecotti and Vafa using a method

called topological anti-topological fusion [3, 4] which is based on the topological twisting

of the superconformal theory. However as we show they can also be derived using ordinary

conformal perturbation theory in the untwisted theory.1

The tt∗ equations are also relevant for theories with N = (4, 4) supersymmetry, such

as the boundary theory in the class of AdS3/CFT2 correspondences we consider here, once

we appropriately project to their N = (2, 2) subalgebras. In N = (4, 4) theories a simple

observation leads to the following additional constraint

∇Ckij = 0 (1.2)

where ∇ represents the covariant derivative along any marginal deformation. This is true

for the following reason: in an N = (2, 2) theory it is known that the chiral ring co-

efficients depend on the moduli holomorphically, so they are independent of anti-holo-

morphic deformations

∇mC
k
ij = 0 (1.3)

while in general ∇mC
k
ij 6= 0. An N = (4, 4) theory has many inequivalent N = (2, 2)

subalgebras. It can be shown that in an N = (4, 4) theory any marginal deformation can

be written as an anti-holomorphic deformation with respect to some N = (2, 2) subalgebra,

and then (1.2) follows from (1.3).

1The original derivation is more general since it also works for non-conformal N = (2, 2) theories.

– 2 –
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The result (1.2) can be interpreted as a non-renormalization theorem for the 3-point

functions of chiral primaries in AdS3/ CFT2, which explains the agreement of computa-

tions performed at different points on the moduli space [5, 6] and also [7, 8]. This is the

analogue of the non-renormalization theorem [9, 10] for 3-point functions of chiral pri-

maries in AdS5/CFT4 which explained the agreement of the weakly and strongly coupled

computations [11]. Our arguments do not depend on taking a large N limit, so the 3-point

functions of chiral primaries have to be (covariantly) constant even at finite N . It is easy to

show that more generally extremal correlators of chiral primaries are also not renormalized

as we change the moduli.

Combining the non-renormalization of the chiral ring coefficients with the tt∗ equations

we can derive a stronger statement. By acting with ∇ on both sides of (1.1) and using (1.2)

we conclude that the curvature of the bundle of chiral primaries is covariantly constant

∇Rij = 0 (1.4)

We also know [12, 13] that for N = (4, 4) theories the moduli space is locally a symmetric

space of the form
SO(4, n)

SO(4) × SO(n)
(1.5)

for some n. Bundles with covariantly constant curvature over symmetric spaces are called

homogeneous bundles and their geometry is completely determined in terms of some basic

group-theoretic data. In some N = (4, 4) theories, such those that arise in the AdS3/CFT2

correspondence, if we know the number of chiral primaries of a given conformal dimension,

it is rather straightforward to fit them into homogeneous bundles. Then the exact con-

nection and curvature on these bundles is determined without any further input from the

dynamics of the CFT. In this sense we can compute the exact mixing of chiral primary

operators as we move on the moduli space, even at strong coupling.

An application of our analysis from the spacetime point of view is that it realizes a

connection between the attractor flow in supergravity and RG-flow in the boundary field

theory, in a certain toy-model, as we now explain. Extremal black holes in supergravity

exhibit a remarkable phenomenon, called the attractor mechanism [14]. The values of

many of the scalar fields near the horizon of the black hole are fixed by its electric and

magnetic charges and completely independent of their values at spatial infinity. The same

black holes can be described by appropriate bound states of D-branes. The worldvolume

theory of these branes is an open string theory, which flows to a conformal field theory at

low energies. This raises a natural question, namely what is the meaning of the attractor

flow in the D-brane picture of the black hole?

As is well known, the AdS throat of the supergravity solution is holographically dual

to the conformal IR fixed point of the effective field theory describing the excitations on the

D-branes that create the black hole. The AdS/CFT correspondence is derived by taking

the low energy limit which on the supergravity side is equivalent to keeping only the near

horizon AdS geometry. In that region of the supergravity solution the moduli have already

reached their attractor values. As a result the attractor mechanism is not visible in the

usual AdS/CFT correspondence.

– 3 –
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Figure 1. Attractor flow in supergravity (left) and RG-flow on the worldvolume of the branes

(right).

Clearly, to see the attractor flow we have to move outside the AdS throat towards the

asymptotically flat region. This requires an extension of AdS/CFT beyond the strict α′ → 0

limit, where it turns into a duality between closed string theory and open string theory. In

the open string language the system is described by a stack of D-branes in flat space, and

on the other hand, in the large N limit, we can consider the closed string description where

we replace the D-branes by a curved closed string background. On the boundary side going

outside the AdS throat is described by deforming the CFT by irrelevant operators. From

this perspective we expect to see the attractor flow as RG-flow on the worldvolume theory

of the branes towards the IR fixed point. See also [15] for related discussions.

It is not easy to make this relation precise, since going outside the AdS throat means

that there is no honest decoupling between open and closed string modes. In particular,

since the open strings living on the branes are not decoupled from the bulk closed string

modes it is not clear what we mean by the “boundary theory”. However as we approach

the IR fixed point, this coupling should become less and less important. In this sense we

expect that at least near the fixed point it should be possible to describe the theory on

the branes in terms of an effective field theory flowing to a CFT in the IR. In view of

these conceptual difficulties we will only consider the first order perturbation away from

the conformal point towards the UV, which should correspond to the final stages of the

attractor flow. More precisely, as shown in figure 1, let us call Msugra the moduli space of

supergravity and M∗
sugra ⊂ Msugra the attractor submanifold for given charges.2 On the

boundary side we have a family of effective quantum field theories characterized by a moduli

space MQFT which flow in the IR to a family of conformal field theories with moduli space

MCFT ⊂ MQFT. According to the AdS/CFT correspondence the moduli spaces M∗
sugra

and MCFT should be identical.3 Moreover, matching the final stages of the attractor flow

2We would like to remind that even in Calabi-Yau compactifications of type II, while the attractor

equations fix the vector multiplets to discrete points, the hypermultiplets are unfixed, so also in this case

there is a continuous family of attractor points parametrized by the hypermultiplet moduli space.
3This has been demonstrated in some examples of AdS3/CFT2 [16]. We would expect the same for other

cases, such as the MSW CFT [17]. In the case of 4d black holes and AdS2/CFT1 the equivalent statement

would be that the “moduli space” of the superconformal quantum mechanics must be the same as the

– 4 –



J
H
E
P
0
3
(
2
0
0
9
)
0
3
0

to RG-flow means that the normal bundle of M∗
sugra inside Msugra should have the same

structure as that of MCFT inside MQFT.4 In particular, this means that the dimensionality

of the bundles should agree, in other words - we should have the same number of irrelevant

operators as the number of scalar moduli fixed by the attractor mechanism, and in addition

the connection on the two bundles should be the same.

This picture is easy to check in the simple case of the attractor flow near an extremal

black string in six dimensions. In this case the boundary CFT is the one appearing in

the AdS3/CFT2 correspondence. As we will see the irrelevant operators which preserve

supersymmetry are descendants of certain fields in the chiral ring. Hence, their number

can be counted and moreover the connection and geometry of their bundle can be exactly

computed using our general analysis. The result that we find on the CFT side agrees with

the predictions from the attractor flow in supergravity.

Finally let us mention another interpretation of the geometry of the chiral ring that we

study in this paper. Spectral flow relates the chiral primaries of the CFT to Ramond ground

states. In the D1/D5 CFT, the Ramond ground states have the following interpretation.

We consider IIB compactified on K3×S1 and a bound state of D1/D5 branes wrapped on

the internal manifold. This looks like a small supersymmetric black hole in five dimensions.

The Ramond ground states of the CFT represent the internal microstates of the black

hole. If we adiabatically change the moduli of the compactification the microstates will

mix among themselves, as is well known from the non-abelian generalization of Berry’s

phase for quantum mechanical systems with degenerate microstates. The connection for

the chiral primaries is related to the connection of the Ramond ground states over the

moduli space, in other words it yields a geometric phase for the internal microstates of the

black hole.

In the first half of the paper we review background material. In section 2 we review

some basic facts about the chiral ring in superconformal field theories. In section 3 we

discuss the deformation of conformal field theories by marginal operators and the associated

connections for the bundle of operators over the moduli space. In section 4 we review basic

results for the connection of the bundle of chiral primaries for the case of N = (2, 2) theories

and show how the tt∗ equations follow from conformal perturbation theory. In section 5

we introduce the N = (4, 4) algebra and discuss its basic properties. In section 6 we show

that the 3-point functions in N = (4, 4) theories are covariantly constant and we compute

the curvature for the bundle of chiral primaries. In section 7 we present the relevance of

our computation for the connection between the attractor flow and RG-flow. In section 8

we discuss how the connection for chiral primaries is related to Berry’s phase for black

hole microstates. In section 9 we summarize our results and discuss some possibilities for

future research.

hypermultiplet moduli space. It would be interesting to give a more precise meaning to this statement.
4In general the geometry of M∗

sugra will receive corrections beyond supergravity, which have to be taken

into account in order to achieve a precise matching with the CFT moduli space. This does not happen in

the D1/D5 system due to the extended supersymmetry.

– 5 –
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2 AdS3/CFT2 and its chiral ring

2.1 Generalities

We can derive the AdS3/CFT2 correspondence with 16 supercharges by starting with IIB

string theory compactified on X, where X = T 4 or K3 and considering a BPS black string

in six dimensions, consisting of a bound state of D1 strings and D5 branes wrapped on X.

By taking a low energy decoupling limit of this system we find the duality between IIB on

AdS3 × S3 ×X (2.1)

and a two dimensional CFT with N = (4, 4) supersymmetry and SU(2)Rleft × SU(2)Rright

as its current algebra. Excluding the center of mass degrees of freedom, the level k and

central charge c are given by

k = Q1Q5 c = 6Q1Q5. (2.2)

This CFT can be understood as a supersymmetric sigma model whose target space is a

resolution of the symmetric product XN/SN with N = Q1Q5, which is moduli space of

instantons of degree Q1 of a U(Q5) gauge theory living on X.

The AdS3/CFT2 correspondence is characterized by the integer c and by a set of

continuous parameters determined by the background values of the moduli fields of IIB.

In other words, the correspondence has a moduli space5 M. This moduli space is visible

on the boundary side as the moduli space of the conformal field theory MCFT and on the

bulk side as the moduli space M∗
sugra of possible values of the scalar fields near the horizon

of the black string in 6d. The local structure of the moduli space is exactly computable

from both sides of the duality [16] and it is of the form

M ≃ SO(4, n)

SO(4) × SO(n)
(2.3)

where n = 5 for X = T 4 and n = 21 for X = K3.

Notice that this is a local statement. The global structure of M is more compli-

cated [16, 18] ,[19] and there are points where the CFT is singular. In this paper we will

only consider local properties and ignore all subtleties related to the global structure of the

moduli space and possible monodromies around singularities.

There are points of M where the boundary CFT is weakly coupled. It is believed that

there is a point where the CFT can be described as a symmetric orbifold CFT [20, 21],

which is analogous to the λ→ 0 limit in AdS5/CFT4. There are other points of M where

the bulk side of the correspondence is at weak coupling and where it is possible to perform

computations in weakly coupled string theory or supergravity.

Once we consider the theory away from these special limits, at a generic point in the

interior of the moduli space M, it is hard to compute anything exactly since both the bulk

and the boundary sides have coupling constants of order unity. However, as long as we stay

5Similarly the AdS5/CFT4 has the discrete parameter N and the continuous parameter τ = θ
2π

+ i 4π

g2

YM

.

– 6 –
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away from singularities, it is reasonable to assume that at all points of M the theory has

a boundary description in terms of a 2-dimensional conformal field theory with N = (4, 4)

supersymmetry and central charge given by (2.2).

In any conformal field theory with extended supersymmetry, and in particular in the

boundary theory of AdS3/CFT2, there is a protected sector consisting of chiral primary

operators. These operators form a ring under multiplication and their 3-point functions

characterize the structure of the ring [2]. The chiral primaries in the AdS3/CFT2 corre-

spondence have been identified in the weak-coupling limits of M. The counting of their

degeneracies in the orbifold CFT limit is in agreement with their counting from supergrav-

ity [22, 23]. More surprisingly, their 3-point functions, that is the structure of the chiral

ring, is the same at different points of the moduli space [5–8].

Our goal is to compute the moduli dependence of the chiral ring at a generic point of

M, where no weakly coupled description of the theory is available. This is possible due

to the extended supersymmetry. As we will see, the chiral ring is covariantly constant

over M. In particular, we will understand the non-renormalization theorem for the 3-point

functions of chiral primaries in AdS3/CFT2. In the rest of this section we will review some

background material.

2.2 Chiral primaries and the chiral ring

We start with a quick review of the chiral ring of 2-dimensional superconformal field theo-

ries [2]. Ultimately we are interested in N = (4, 4) theories, but for simplicity of notation

in this section we will only consider the left-moving part of an N = (2, 2) SCFT.

The left-moving currents are the energy momentum tensor T (z), two supercurrents

G±(z) and the U(1) R-current J(z). The superscript index of the supercurrents denotes

their R-charge which is ±1. An operator φ is called superconformal primary if it satisfies

the condition

Ln|φ〉 = Jn|φ〉 = G+
n− 1

2

|φ〉 = G−
n− 1

2

|φ〉 = 0, n > 0. (2.4)

If in addition it satisfies

G+
−1/2|φ〉 = 0 (2.5)

then it is called chiral primary. Using the N = 2 algebra we can show that for such

operators we have

(2L0 − J0)|φ〉 = 0 (2.6)

and therefore the conformal dimension h and the R-charge q are related as h = q/2.

Conversely, in a unitary CFT we can show that a primary field satisfying (2.6) will be

chiral. Similarly we define antichiral primary fields φ which satisfy

G−
−1/2|φ〉 = 0 ⇔ (2L0 + J0)|φ〉 = 0. (2.7)

Their dimension and R-charge are related by h = −q/2. Obviously if a field φ is chiral,

then φ† is antichiral.

A remarkable property of chiral primary operators is that they form a ring. The OPE

of two chiral primaries is nonsingular as can be demonstrated by U(1) charge conservation

– 7 –
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and unitarity and has the form

φi(z)φj(w) = Ckijφk(w) + . . . (2.8)

where the operator φk is also chiral primary of charge qk = qi + qj. The constants Ckij are

the structure constants of the ring.

We define the two point function of chiral primaries on the sphere which plays the role

of Zamolodchikov’s metric

〈φi(0)φj(∞)〉 = gij , (2.9)

and can be nonzero only if the fields have opposite R-charges. We also have the 3-point

functions on the sphere

〈φi(0)φj(1)φk(∞)〉 = Cijk (2.10)

where again from charge conservation it must be of the form chiral-chiral-antichiral.

Using the OPE of the chiral ring we find the following relation between the chiral ring

coefficients and the 3-point functions

Cijk = C lijglk. (2.11)

Our discussion up to this point has been about the left-moving sector of an N = 2

theory. When we consider the full N = (2, 2) theory we can have fields which are chiral on

both sides, antichiral on both, or chiral - antichiral, and we will have four corresponding

rings (cc), (aa), (ca), (ac) which are pairwise complex conjugate.

As we will explain in more detail later, for N = (4, 4) theories we can use the enhanced

R-symmetry SU(2)Rleft×SU(2)Rright to rotate a chiral field into an antichiral one. This implies

that all four rings are equivalent, so essentially there is only one ring in an N = (4, 4) theory.

2.3 Moduli dependence

So far we have considered the chiral primaries and their OPEs in a given SCFT. Usually

superconformal field theories come in families, parametrized by a moduli space MCFT.

Motion along MCFT is generated by marginal operators. We will consider perturbations

by operators which preserve the N = (2, 2), or N = (4, 4), structure and we will stay away

from any singularities on the moduli space, so we will assume that MCFT is a smooth

manifold of fixed dimension, at least locally.

While the dynamics of the CFT depends on the position on MCFT, certain properties

of the chiral ring are protected. For example the number of chiral primaries of given

dimension is generally constant on MCFT. It is possible for chiral primaries to pair up

into long multiplets and leave the BPS spectrum, but this will happen at special points or

submanifolds of the moduli space. We will restrict our analysis to regions of MCFT where

this does not happen. In AdS3/CFT2 this assumption is justified by the agreement of the

counting of chiral primaries in the symmetric orbifold and the supergravity limits.

In a general N = (2, 2) SCFT the structure constants Ckij and the 2- and 3-point

functions gij , Cijk are usually nontrivial functions on MCFT. The agreement of 3-point

functions of chiral primaries in AdS3/CFT2 at different points of the moduli space is a

– 8 –
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strong indication that in this system they are actually constant on the moduli space. This

moduli-independence must be a consequence of the extended supersymmetry in N = (4, 4)

superconformal field theories, which implies a non-renormalization theorem for the 3-point

functions of chiral primaries in theories of this type.

2.4 The bundle of chiral primaries and the chiral ring

In general comparing the correlation functions of operators at different points of the mod-

uli space of a theory is not straightforward due to operator mixing. More precisely, to

compare their correlation functions in a meaningful way, we first have to verify that the

operators under comparison are actually “the same” at the two different points. Since the

underlying quantum field theory is also changing as we vary the moduli, there is no natural

identification of operators at different points of the moduli space. We could try to label

operators by their conformal dimension and other conserved charges, but in general there

is too large a degeneracy of operators of given charge to uniquely identify them. Moreover,

as we will see later, the correct identification of operators between different points on the

moduli space is actually path dependent.

Consider the moduli space MCFT of a CFT. At each point p ∈ MCFT we have the

vector space V
(p)
q of chiral primary operators of charge q. As we argued above we will

assume that the dimension of this space is the same at all points, however there is no

natural identification between the chiral primaries at different points of MCFT. This

means that V
(p)
q is the fiber of a vector bundle

Vq (2.12)

of chiral primaries of charge q over the moduli space. The chiral ring coefficients can be

thought of as multiplication between bundles of this form

Ckij : Vp ⊗ Vq → Vp+q (2.13)

and similarly the three point functions

Cijk : Vp ⊗ Vq ⊗ Vp+q → C. (2.14)

It should be clear that to meaningfully compare the 3-point functions of chiral primaries at

different points, we have to compute the connection on the bundles Vq which will specify

how exactly we can “parallel transport” operators from one point to another. The con-

nection on the bundle of operators over the moduli space is generally determined by the

dynamics of the CFT as we explain in the next sections. In the special case of chiral pri-

maries in theories with N = (2, 2) supersymmetry this computation is simplified and the

connection of the bundles Vq can be computed by the tt∗ equations which will be described

later.

In this paper we want to compute the geometry of the bundles of chiral primaries in

N = (4, 4) theories, and in particular for the theory relevant for AdS3/CFT2. The first

result of our analysis is to show that the 3-point functions are covariantly constant, that

is they satisfy

∇µCijk = 0 (2.15)

– 9 –



J
H
E
P
0
3
(
2
0
0
9
)
0
3
0

where ∇µ is a covariant derivative6 along a tangent direction on MCFT, associated to

the connection on the bundles Vq. This is a non-renormalization theorem for the chiral

primary 3-point functions in AdS3/CFT2 and more generally for any N = (4, 4) theory.

The second result is the computation of the connection on the bundles of chiral primaries

at a general point on the moduli space of N = (4, 4) theories, using the constraints from

supersymmetry which allows us to express them in terms of the tt∗ equations.

3 Families of conformal field theories and the connection for operators

The fact that we have to define a connection on the bundle of operators over the moduli

space of a conformal field theory is quite general and not specific to theories with super-

symmetry. The most familiar example is the connection for exactly marginal operators.

The marginal operators Oµ(z, λ) of a CFT correspond to tangent vectors on the moduli

space at the point λ ∈ MCFT. Comparing marginal operators at different points of MCFT

is analogous to comparing tangent vectors at different points of a manifold, i.e. impos-

sible, unless we first define a connection which describes their parallel transport. The

moduli space MCFT of a conformal field theory has the structure of a Riemannian mani-

fold. This structure is defined by the Zamolodchikov metric gµν(λ) which is given by the

2-point function

〈Oµ(z, λ)Oν(w, λ)〉 =
gµν(λ)

|z − w|4 . (3.1)

In general the metric gµν(λ) depends on the position λ ∈ MCFT which means that the mod-

uli space has a non-trivial geometry. We can use the metric to define a metric-compatible

connection for the operators Oµ(z, λ), allowing us to parallel transport and compare them

at different points of MCFT. So the vector bundle of marginal operators is isomorphic to

the tangent bundle of the moduli space and the natural connection on it is the Levi-Civita

connection associated to the Zamolodchikov metric. The mixing of marginal operators

under deformations of the theory is expressed by the equation

δµOν = ΓκνµOκ (3.2)

where

Γκνµ =
1

2
gκλ(∂νgµλ + ∂µgνλ − ∂λgµν) (3.3)

and gµν(λ) is the Zamolodchikov metric defined in (3.1).7

6It should be clear that naive expression

∂µCijk

?
= 0 (2.16)

is meaningless since the ordinary, instead of the covariant, derivative of a geometric object is not an invariant

quantity.
7In general the marginal operators correspond to tangent vectors on the moduli space. The relation

between operator mixing (3.2) and the Zamolodchikov metric (3.1) via (3.3) is true only if we choose a

basis of marginal operators corresponding to commuting vector fields on the moduli space, so that they can

be interpreted as derivatives with respect to a choice of coordinates. Otherwise they have to be treated

in terms of a basis of vielbeins and the expression for their mixing has to be written in terms of the

spin-connection.
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Similar arguments hold for operators of higher conformal dimension. For simplicity

we can assume that at all points of MCFT we have a set of operators {ϕI} of conformal

weight (h, h). If there are no additional conserved charges distinguishing them, then they

will generically mix among themselves when we move on MCFT. Under a deformation

generated by a marginal operators Oµ we have the mixing

δµϕI = AJµI ϕJ (3.4)

where AJµI plays the role of the connection. Similarly if we consider an infinitesimal closed

loop of deformations spanned by two marginal operators Oµ,Oν , we have the curvature

(δµδν − δνδµ)ϕI = RJµνI ϕJ . (3.5)

So the operators {ϕI} take values in a vector bundle over the moduli space, whose connec-

tion is AJµI and the curvature RJµνI . In what follows we will explain that there is a natural

connection which is completely determined by the dynamics of the CFT.

3.1 Deformations of conformal field theories

Before we proceed, we would like to pause and discuss some (well-known) subtleties which

will clarify the underlying reason for having a nontrivial connection for the operators in a

family of conformal field theories. Let us start with a given theory characterized by a set

of correlation functions

Gn(x) = 〈ϕ1(x1) . . . ϕn(xn)〉 (3.6)

which satisfy the axioms of a 2-dimensional CFT.8 We consider an operator O(z) in this

theory. From the Lagrangian formulation point of view, we can deform the theory by

adding to the action

S → S +
λ

π

∫
d2zO(z) (3.7)

where λ is a small parameter. The effect of this deformation is to modify the n-

point functions

Gn(x) → Gn(x) + δGn(x). (3.8)

For deformations of the form (3.7), the deformed n-point functions are given, to first order

in λ, in terms of integrated (n+ 1)-point functions of the original undeformed theory

δGn(x) ≡ δ〈ϕ1(x1) . . . ϕn(xn)〉 ≃
λ

π

∫
d2z〈ϕ1(x1) . . . ϕn(xn)O(z)〉 (3.9)

where the meaning of the symbol ≃ will become clear below. To second order in λ we have

to consider the twice integrated (n+2)-point function of the undeformed theory and so on.

The deformed theory may be a local quantum field theory, but not necessarily a CFT.

By demanding that the deformed correlation functions satisfy the CFT axioms, we find

certain conditions for the deformation operator O(z). To first order in λ the condition

is that O(z) must be an operator of dimension (1, 1), that is a marginal operator. More

8Notice that up to this point the correlation functions are defined only for distinct points, xi 6= xj .
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constraints from the requirement of conformal invariance appear at higher orders in λ, and

if all these are satisfied O(z) is called an exactly marginal operator.

Going back to (3.9) we see that in order to compute the deformed correlators we

have to integrate the insertion of O(z) over z, but when z → xi the operator O(z) will

hit the other insertions. This introduces two subtleties. First, in the original theory the

correlators (3.6) were defined for distinct points, and formally we may have contact terms

when the insertions coincide [12, 24]. Second, the integral over z in (3.9) will generally

diverge because of short distance singularities between the operator O(z) and the other

insertions ϕi(xi). So the right hand side of equation (3.9) is not well defined at this stage.

Notice that for large z the correlator decays at least as |z|−4, so there are no IR divergences

to worry about.

Actually, the two aforementioned subtleties are related in the sense that we define the

contact terms to precisely cancel the infinities arising from the integration over z around

the punctures. While the infinities are cancelled in this way, there may be finite remaining

contributions from this subtraction prescription which are responsible for the nontrivial

connection for the operators of the CFT.

Equivalently we can forget about contact terms, but instead define a renormalization

prescription for the integrated (n + 1)-point function which is consistent with locality.

Considering (3.9) again, we see that the more precise statement should be

δGn(x) =
λ

π

[∫
d2z〈ϕ1(x1) . . . ϕn(xn)O(z)〉

]

ren

(3.10)

where the subscript ren stands for renormalized, and its exact meaning will be explained

in the next subsection.

Now if we consider two deformations, one by the operator Oµ and one by Oν then the

naive answer (3.9) would give

(δµδνGn)naive ≃
λ1λ2

π2

∫
d2z1

∫
d2z2〈ϕ1(x1) . . . ϕn(xn)Oν(z1)Oµ(z2)〉 (3.11)

and also

(δνδµGn)naive ≃
λ1λ2

π2

∫
d2z1

∫
d2z2〈ϕ1(x1) . . . ϕn(xn)Oµ(z1)Oν(z2)〉 (3.12)

so formally

(δµδνGn)naive = (δνδµGn)naive (3.13)

which would indicate that the order of deformation does not matter and it would imply

that there is no curvature on the space of CFTs. However this is wrong, since the integrated

(n+ 2)-point functions are not well defined for the reasons we mentioned earlier. Only the

renormalized integrated (n + 2)-point functions are meaningful

(δµδνGn)ren =
λ1λ2

π2

[∫
d2z1

∫
d2z2〈ϕ1(x1) . . . ϕn(xn)Oν(z1)Oµ(z2)〉

]

ren

(3.14)
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where again we have to specify the way to renormalize the double integral. As it turns

out, it is possible to find a renormalization prescription for the integrated correlation func-

tions (3.10) and (3.14), such that the axioms of a CFT are preserved but the price we have

to pay is that in general

(δµδνGn)ren 6= (δνδµGn)ren. (3.15)

Because of this non-commutativity the correct statement is not

δµGn
?
= λ∂µGn (3.16)

but rather

δµGn = λ∇µGn, (3.17)

in other words

∇µGn =
1

π

[∫
d2z〈ϕ1(x1) . . . ϕn(xn)Oµ(z)〉

]

ren

(3.18)

The renormalization prescription defines the covariant derivative ∇µ associated to the

connection AJµI on the vector bundle of the operators {ϕI} introduced in (3.4).

3.2 The connection for operators

In [25, 26] connections on the vector bundle of operators over the moduli space of a CFT

were studied in detail. A natural prescription (called the connection c in [26]) for defining

the renormalized deformed correlators is the following: consider the to-be-integrated (n+1)-

point function, introduce very small disks of size ǫ around the punctures xi, and define the

regularized integrated (n+ 1)-point function

δµGn(ǫ) =
λ

π

[∫

|z−xi|>ǫ
d2z〈ϕ1(x1) . . . ϕn(xn)Oµ(z)〉

]

reg

. (3.19)

As ǫ → 0, and suppressing the xi variables, the regularized integrated function will have

the form

δµGn(ǫ) = (δµGn)ren +
∑

α>0

cα
ǫα

+ c0 log ǫ (3.20)

where the finite piece

(δµGn)ren (3.21)

defines the renormalized perturbed n-point function and the corresponding connection ∇µ

by (3.18).

If we consider the second variation of the correlation function according to this pre-

scription, we find that

(δµδνGn)ren 6= (δνδµGn)ren (3.22)

This is the reason that we have curvature on the vector bundles of operators over the

moduli space.
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Also, notice that the vector bundle whose fiber is spanned by a set of operators {ϕI}
is equipped with a natural metric gIJ(λ) defined by the 2-point function

〈ϕI(z)ϕJ (w)〉 =
gIJ(λ)

(z − w)2h(z − w)2h
. (3.23)

The connection defined above is compatible with the metric

∇µ gIJ = 0 (3.24)

so it is a natural connection for this vector bundle.

The curvature of the connection can be expressed in terms of 4-point functions. We

quickly describe the main result, more details can be found in [26]. Consider a set of

operators {ϕI} of the same conformal dimension and same charges. The object we want

to compute is the curvature RJµνI of corresponding vector bundle over the moduli space.

The curvature can be computed if we know the 4-point function

〈Oµ(z1)Oν(z2)ϕJ(x1)ϕI(x2)〉 (3.25)

for distinct points of insertion. Generalizing the prescription (3.19), (3.20) the curvature is

given by a twice integrated and appropriately regulated antisymmetrized combination of

the 4-point function, as follows [26].

First we consider the 4-point function9 as a function of z1, z2

Gµν(z1, z2) = 〈Oµ(z1)Oν(z2)ϕ
J (∞)ϕI(0)〉 (3.26)

for distinct points. Keeping z1 fixed, we consider the integral over z2 of the following

expression10

F (z1, ǫ) =
1

π2

∫

ǫ<|z2|<1
d2z2(Gµν(z1, z2) −Gνµ(z1, z2)). (3.27)

Notice that because of the antisymmetrization the integral converges as z1 → z2. For fixed

ǫ the integral is convergent, however it may diverge as ǫ → 0 because the operator at z2
approaches the operator at 0. We define the regularized integral

F̃ (z1) = lim
ǫ→0

(F (z1, ǫ) − Dp(F (z1, ǫ))) (3.28)

where Dp denotes the divergent part, defined as in (3.20). This procedure gives us a finite

function F̃ (z1). Finally we integrate F̃ over z1. There are divergences as z1 → 0 and again

we are instructed to keep the finite part

RJµνI = Fp

∫

|z1|<1
d2z1F̃ (z1) (3.29)

9The index J has been raised with the Zamolodchikov metric (3.23) as ϕJ = gJKϕK .
10The integral over the disc arises from separating the plane, viewed as a two sphere, in two hemispheres,

see [26].
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where Fp denotes the finite part, again defined as in (3.20). This is the final expression for

the curvature. It is also possible to rewrite the curvature in terms of OPE coefficients. If

we have

Oµ(z)ϕI(0) =
∑

k

Hk
µIϕk(0)

z1+hI−hkz1+hI−hk

(3.30)

then after some algebra [26] we can show that the curvature has the form

RJµνI = 4δsI ,sJ

(
∑

γk>γI

+
∑

γk<γI

)
Hk

[µIH
J
ν]kδsk,sI

γkJγkI
(3.31)

where γ = h + h, s = h − h are the scaling dimension and spin of the operator, and

γij ≡ γi − γj.

As we can see, the connection on the vector bundle of operators depends on the dynam-

ics of the CFT. For a general interacting CFT it is difficult to compute the exact 4-point

function, or equivalently the OPE coefficients, hence the computation of the curvature is

hard. In theories with extended supersymmetry, and if we are interested in the curvature

of operators in the chiral ring, it becomes possible to compute the curvature exactly. As

we will see in this case the infinite sum in (3.31) truncates to a finite sum over chiral ring

coefficients, giving us the tt∗ equations. We analyze the N = (2, 2) case in the next section

and then consider N = (4, 4) SCFTs.

4 The chiral ring of N = (2, 2) theories

The bundle of chiral primaries has been analyzed in detail in theories with N = (2, 2)

superconformal symmetry. The main result relevant for us is the computation of the

curvature of the bundle of chiral primaries in terms of the chiral ring coefficients, which

is expressed by the tt∗ equations derived by Cecotti and Vafa in [3]. In this section we

quickly review the main points and give a derivation of the tt∗ equations for superconformal

theories which does not rely on the topological twisting.

In an N = (2, 2) SCFT the left-moving currents are T (z), G±(z), J(z) and the right-

moving ones T (z), G
±
(z), J(z). The OPEs of the algebra can be found in appendix A. As

we explained before in N = (2, 2) theories we have the (cc) ring of chiral primary-chiral

primary operators φi which satisfy

L0 =
J0

2
, L0 =

J0

2
(4.1)

and their complex conjugates (aa) with opposite charges. We also have chiral primary -

antichiral primary operators ψi in the (ca) ring satisfying

L0 =
J0

2
, L0 = −J0

2
(4.2)

and their complex conjugates in the (ac) ring. We will refer to the (cc) ring and its

conjugate as the chiral ring, and to (ca) and its conjugate as the twisted chiral ring. The

structure constants of the chiral ring are given by

φi(z)φj(w) = Ckijφk(w) + . . . (4.3)
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while those of the twisted chiral ring by

ψa(z)ψb(w) = C̃dabψd(w) + . . . (4.4)

We can find marginal operators by considering the descendants of chiral primaries of di-

mension (1/2, 1/2). We have the following possibilities11

Oi =
1

2
G−

−1/2G
−
−1/2 · φi, Oj =

1

2
G+

−1/2G
+
−1/2 · φj (4.5)

Oa =
1

2
G−

−1/2G
+
−1/2 · ψa, Ob =

1

2
G+

−1/2G
−
−1/2 · ψb. (4.6)

All these are operators of conformal dimension (1, 1) and R-charge (0, 0), so they are

marginal and can be used to perturb the CFT. The first class of operators labeled by

i, j, . . . are descendants of fields in the chiral ring and their complex conjugates, while the

second class labeled by a, b, . . . are descendants of fields in the twisted chiral ring and their

complex conjugates. We use Greek indices µ, ν, . . . to denote a general marginal operator

which can be of any of the four forms described above.

A basic result is that for N = (2, 2) SCFTs the moduli space locally has a prod-

uct structure

MCFT = MC ×MTC (4.7)

where MC is generated by marginal operators which come from the chiral ring, and MTC

is generated by marginal operators from the twisted chiral ring. As an example, for a

sigma-model whose target space is a Calabi-Yau 3-fold, one of the spaces corresponds to

the Kähler structure deformations while the other to the complex structure deformations.

It can be shown that each of the two components MC ,MTC is a complex, Kähler manifold.

Moreover it can be shown that they are special Kähler.

We denote by gij the Kähler form of the component MC and gab that of MTC, which

are given in terms of CFT data by the two point functions

〈Oi(z)Oj(w)〉 =
gij

|z − w|4 , 〈Oa(z)Ob(w)〉 =
gab

|z − w|4 . (4.8)

In N = (4, 4) theories the moduli space does not factorize, not even locally. It consists of

a single factor and cannot be decomposed into chiral and twisted chiral components. As

we will see it is not a complex manifold.

4.1 Curvature of the algebra

We now proceed with a discussion of the connection on the bundle of operators over the

moduli space. In the same way that chiral primaries can mix under deformations of the

CFT, the generators of the algebra can also mix among themselves, see [27] for a nice review.

The energy momentum tensor T (z) and the U(1) current J(z) are uniquely defined at each

point of the moduli space, so there can be no holonomy associated to them. However the

11We have included the factors of 1
2

in the normalization of the marginal operators to ensure that gij ≡

〈Oi(1)Oj(0)〉 = 〈φi(1)φj(0)〉.
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supercurrents are not uniquely defined, since the N = (2, 2) algebra has a U(1)L × U(1)R
automorphism which transforms the supercurrents as

G± → e±iθG±, G
± → e±iθG

±
(4.9)

leaving the bosonic currents unchanged, and where θ, θ are two independent angles. Con-

sequently, what we mean by a supercurrent is ambiguous up to an overall phase. Moreover,

if we parallel transport on the moduli space and come back to the original point, the su-

percurrents will receive a U(1) rotation. This means that the supercurrents are (operator

valued) sections of U(1) bundles over the moduli space. If G+ is a section of a U(1) bundle

L then G− will be a section of L−1, since they transform with opposite phases. Similarly

G
+

will be a section of another bundle L and G
−

a section of L−1
. We call F the curvature

tensor of the bundle L and F the curvature of L. According to our previous discussion, to

compute the curvature of L and L, we need the 4-point functions

〈Oµ(x)Oν(y)G
r(z)Gs(w)〉 and 〈Oµ(x)Oν(y)G

r
(z)G

s
(w)〉, (4.10)

where Oµ,Oν are marginal operators of the form (4.5),(4.6) and r, s = ±.

These four point functions can be exactly computed using the superconformal Ward

identities of the N = (2, 2) algebra. For example as we show in appendix C we have

〈Oi(x)Oj(y)G
+(z)G−(w)〉 =

2c

3

gij
|x− y|4(z − w)3

+
2gij

(x− z)2(y − w)2(z − w)(x− y)2

(4.11)

and similarly for the other combinations. Following the prescription of equations (3.26)

to (3.29) we find that the only nonzero components of the curvature for the line bundle

L are

Fij = −3

c
gij , Fab = −3

c
gab (4.12)

while for L we have

F ij = −3

c
gij , F ab =

3

c
gab (4.13)

Notice that if we consider the bundle L ⊗ L, then its curvature is zero on MTC, while

L ⊗ L−1
has zero curvature over MC .

To summarize, we found that while the bosonic currents T (z), J(z) are well defined

everywhere, the supercurrents G±(z) are ambiguous and there is an associated holonomy

for them described by the holomorphic line bundles L, L over the moduli space. Notice

that the Kähler form on the moduli space is c
3 times the curvature of the line bundle L

(or L), so its first Chern class is c
3 times an integral class [28, 29]. For sigma-models in

Calabi-Yau n-folds, where c = 3n, the bundle Lc/3 is the same as the line bundle of the

holomorphic (n, 0) form Ω over the complex structure moduli space.

4.2 On the curvature of the chiral primaries

Now we want to consider the connection on the bundle of chiral primaries. From charge

conservation, (cc) operators can only mix with themselves, and similarly for (aa), (ca), (ac).
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For each conformal dimension (h, h) we have the bundle of chiral primaries φi with charge

(2h, 2h), the bundle of twisted chiral primaries with charge (2h,−2h) and their hermi-

tian conjugates.

To avoid overly heavy notation we will denote the total bundle of chiral primaries by

V and that of twisted chiral primaries by Ṽ. Each of these bundles is the direct sum of

subbundles Vq corresponding to fields of specific charges

V =
∑

q

⊕Vq (4.14)

It should be clear that the connection on the bundle V has to preserve the grading by con-

formal dimension (or U(1) charge), since it should not mix operators of different dimensions

under parallel transport.

4.3 Direct computation of the curvature of chiral primaries

There are two methods to compute the curvature of chiral primaries: one is to directly

compute the relevant 4-point function in the physical theory and then use (3.29). The

second is to use spectral flow to the Ramond sector, consider the topologically twisted

theory and follow the arguments of [3]. The two methods give the same result, which is the

tt∗ equations. In this section we show how the direct computation of the 4-point function

yields an alternative derivation of the tt∗ equations in superconformal theories.

Let us consider the curvature of the bundle V over the factor MC of the moduli space.

According to the general expression (3.29), we need to compute the 4-point functions

〈Oi(x)Oj(y)φk(z)φl(w)〉, 〈Oj(x)Oi(y)φk(z)φl(w)〉 (4.15)

where

Oi(x) =
1

2
G−

−1/2G
−
−1/2 · φi(x), Oj(y) =

1

2
G+

−1/2G
+
−1/2 · φj(y). (4.16)

As explained in appendix D, using the OPEs of the supercurrents with the chiral primaries,

we can move the supercurrent operators from Oi onto Oj and we have

〈Oi(x)Oj(y)φk(z)φl(w)〉 = ∂y∂y

( |y − z|2
|x− z|2 〈φi(x)φj(y)φk(z)φl(w)〉

)
(4.17)

similarly moving the supercurrents from Oj to Oi we have

〈Oj(x)Oi(y)φk(z)φl(w)〉 = ∂y∂y

( |y − w|2
|x− w|2 〈φj(x)φi(y)φk(z)φl(w)〉

)
(4.18)

Taking w → 0 and z → ∞ we find

〈Oi(x)Oj(y)φk(∞)φl(0)〉 = ∂y∂y
(
〈φi(x)φj(y)φk(∞)φl(0)〉

)
(4.19)

and

〈Oj(x)Oi(y)φk(∞)φl(0)〉 = ∂y∂y

( |y|2
|x|2 〈φj(x)φi(y)φk(∞)φl(0)〉

)
(4.20)
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We can now use the general formula (3.29) for the curvature of the bundles of operators.

We notice that as y → 0 both of the correlation functions are finite: for (4.19) we just have

to use the OPE in the antichiral ring which is non-singular, while for (4.20) we have to use

the results from appendix E for the OPE of a chiral field with an antichiral. The leading

term goes like 1
|y|2 and is exactly cancelled by the |y|2 in the numerator. Following (3.29)

the curvature is

Rij = Fp
1

(π)2

∫

|x|<1
d2x I(x) (4.21)

where

I(x) =

∫

|y|<1
d2y ∂y∂y

(
〈φi(x)φj(y)φk(∞)φl(0)〉

)

− ∂y∂y

( |y|2
|x|2 〈φj(x)φi(y)φk(∞)φl(0)〉

) (4.22)

and we used the fact that there is no singularity as y → 0. Using Gauss’s theorem we

have12

I(x) =
1

4

∫

|y|=1
dθ1(y∂y + y∂y)

(
〈φi(x)φj(y)φk(∞)φl(0)〉 −

|y|2
|x|2 〈φj(x)φi(y)φk(∞)φl(0)〉

)

(4.23)

From the conformal Ward identity
∑

i

(hi + zi∂i) 〈ϕ1(z1) . . . ϕn(zn)〉 = 0 (4.24)

we have for the 4-point function

(1 + x∂x + y∂y)〈φi(x)φj(y)φk(∞)φl(0)〉 = 0 (4.25)

Using this we can write (4.23) as

I(x) = −1

4

∫

|y|=1
dθ1(2+x∂x+x∂x)

(
〈φi(x)φj(y)φk(∞)φl(0)〉 −

1

|x|2 〈φj(x)φi(y)φk(∞)φl(0)〉
)

(4.26)

Considering the integration over x we find

Rij = − 1

(2π)2

∫ 1

0
dr

∫

|y|=1
dθ1

∫

|x|=r
dθ2

d

dr

(
r2〈φi(x)φj(y)φk(∞)φl(0)〉 (4.27)

−〈φj(x)φi(y)φk(∞)φl(0)〉
)

So we have

Rij = − 1

(2π)2
lim
|r|→1

∫

|y|=1
dθ1

∫

|x|=r
dθ2

(
r2〈φi(x)φj(y)φk(∞)φl(0)〉

− 〈φj(x)φi(y)φk(∞)φl(0)〉
)

+
1

(2π)2
lim
|r|→0

∫

|y|=1
dθ1

∫

|x|=r
dθ2

(
r2〈φi(x)φj(y)φk(∞)φl(0)〉

− 〈φj(x)φi(y)φk(∞)φl(0)〉
)

(4.28)

12As explained in [26] the antisymmetrized 4-point function has no singularity as y → x.
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The contribution from the first two terms can be computed using the OPE between φi and

φj as explained in appendix F. The contribution form the second term can be computed

using the OPE of the field at x with the field at 0, which is determined by the chiral ring

coefficients (see also appendix E). Finally we have

Rij = gijgkl

(
1 − 3

c
(q + q)

)
− CmikgmnC

∗n
jl

+ gkmC
∗m
jn
gnρCσiρgσk

= gijgkl

(
1 − 3

c
(q + q)

)
− [Ci, Cj ]

(4.29)

All other components of the curvature vanish, as can be easily demonstrated using a similar

analysis. To summarize we find the following expressions for the curvature

[∇i,∇j ] = 0

[∇i,∇j ] = 0

[∇i,∇j ] = gijgkl

(
1 − 3

c
(q + q)

)
− [Ci, Cj ]

(4.30)

Apart from the term proportional to gijgkl in the third equation, these are the tt∗ equations

which were initially derived [3] using the correspondence between chiral primaries in the

NS sector and the Ramond ground states, and the topological twisting of theories with

extended supersymmetry. More details can be found in the relevant papers. While the

derivation based on the topological twisting is more general, as it also works for non-

conformal N = (2, 2) theories, it is satisfying that the same result can be reproduced from

the point of view of conformal perturbation theory in the physical theory without using

the twisting. We discuss the role of the extra term in the next subsection.

The main use of these equations is that for N = (2, 2) theories we can compute the

connection on the bundles of chiral primaries if we know the chiral ring coefficients. In

general the chiral ring coefficients are not constant, rather they are holomorphic functions

on the moduli space. Later we will see the simplifications that occur for N = (4, 4) theories.

Before we proceed let us mention that similarly we can compute the curvature of the

bundle of the twisted chiral ring Ṽ over the factor MTC of the moduli space and we similarly

find the equation

Rab = gabgcd

(
1 − 3

c
(q − q)

)
− [C̃a, C̃b]. (4.31)

4.4 Some comments

In the original tt∗ equations for the Ramond ground states of the topologically twisted

theory, the term

gijgkl

(
1 − 3

c
(q + q)

)
(4.32)

was not present. This means that the connection for the Ramond states in the topologically

twisted theory is not exactly the same as the connection for NS chiral primaries in the

physical theory, but they differ by U(1) phases related to the line bundles L,L. While

this extra term came out of our computation naturally, using the general formalism for the
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connection of operators, we have not fully understood why there is a difference between

the physical and twisted theories. Because of this we would like to make some consistency

checks regarding the presence of this term. In this section we will consider a special class

of chiral primaries and we will see that to get the correct answer for their curvature we do

indeed need the extra term (4.32).

First we consider the case of the identity operator I(z) whose charges are (0, 0). Ob-

viously its curvature over the moduli space should be zero. This can be seen from the

4-point function

〈Oi(x)Oj(y)I(z)I(w)〉 =
gij

|x− y|4 (4.33)

This is symmetric under x ↔ y, so its curvature must vanish. Now, if we compute the

second term of (4.30) on the subspace spanned by I(z) we have

[Ci, Cj ] = gij (4.34)

This is precisely cancelled by the term (4.32) for q = q = 0.

Another example we will consider is the chiral primary ρ(z) of highest left U(1) charge

(c/3, 0). This is a unique field present in any N = (2, 2) theory. To compute the relevant

4-point function we consider the bosonization of the U(1) currents

J(z) = i
√
c/3 ∂H, J(z) = i

√
c/3 ∂ H (4.35)

where H, H are free compact bosons. Any operator ϕ with charge (q, q) can be written as

ϕ = ei
√

3/c(qH+qH)χ (4.36)

with χ a neutral operator, which may be a polynomial in J ∼ ∂H and J ∼ ∂H. The field

ρ(z) has charges (c/3, 0) and using the bosonized currents can be written as

ρ(z) = ei
√
c/3H (4.37)

The marginal operators are neutral so if we write them in the form (4.36) then the H-

dependence can be at most a polynomial in derivatives of the fields H,H, or equivalently

polynomial in the currents J, J and their derivatives. However we know that for the

marginal operators which are descendants of chiral primaries we have

J(z)O(w) = regular (4.38)

which means that actually these marginal operators do not involve the free boson H(z) at

all (similarly for the right moving H). But this implies that

ρ(z)O(w) = regular (4.39)

Now we consider the 4-point function

〈Oi(x)Oj(y)ρ(z)ρ†(w)〉 (4.40)
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The field ρ(z) is holomorphic so we can compute the 4-point function from the OPEs.

From (4.39) we see that the only nontrivial OPE is between ρ(z) and ρ†(w) which is of

the form

ρ(z)ρ†(w) =
gρρ

(z − w)2c/3
+ . . . (4.41)

where the operators appearing in the dots only involve the free boson H. As we argued

the marginal operators do not couple to H, so the 4-point function is equal to

〈Oi(x)Oj(y)ρ(z)ρ†(w)〉 =
gijgρρ

|x− y|4(z − w)2c/3
(4.42)

Again this is symmetric in x↔ y so the curvature of the field ρ(z) should vanish. Looking

at (4.30) we find that for this field

[Ci, Cj ] = 0 (4.43)

while the term (4.32) is also zero for q = c/3, q = 0. So indeed the curvature vanishes.

Similarly one can study the right moving field ρ of charge (0, c/3). Finally we consider the

field A = (ρρ) of charge (c/3, c/3). Since this is the product of ρ and ρ its curvature should

also vanish. The second term of (4.30) for this field gives

[Ci, Cj ] = −gijgAA (4.44)

This is precisely cancelled by the term (4.32) for q = q = c/3.

The conclusion is that in all these cases the presence of the term gijgkl
(
1 − 3

c (q + q)
)

is necessary to give the correct answer for the curvature of the operators. See also foot-

note (21) for some related observations.

Notice that the extra term is reminiscent of duality between Hp,q(M) andHd−p,d−q(M)

for a 2d dimensional Calabi-Yau manifold. Perhaps its presence/absence is related to

whether one uses the standard basis for the chiral primaries, (which means that they are

directly related to the Dolbeault cohomology in the case of a supersymmetric sigma model),

or a dual basis. It would be interesting to explore this a bit further.

5 The N = (4, 4) superconformal algebra

In this section we review some basic properties of the (small) N = (4, 4) superconformal

algebra, whose OPEs can be found in appendix A. Its R-symmetry group is SO(4)R =

SU(2)Rleft × SU(2)Rright. The left-moving currents are the energy momentum tensor T and

the currents of the SU(2)Rleft symmetry Ji, i = 1, 2, 3. The left-moving supercurrents fall

into two doublets of the SU(2)Rleft and will be denoted by Ga,i, a, i = 1, 2, obeying a reality

condition Ga,i = ǫabǫij(Gb,j)∗. The SU(2)Rleft acts on the a index. The level of the SU(2)Rleft
current algebra is equal to k = c

6 , where c is the central charge of the theory. We have the

same structure on the right-moving sector and we denote the right-moving generators by

T , J i and G
a,i

.

The N = (4, 4) algebra has an outer automorphism which rotates the supercurrents,

leaving all bosonic generators unchanged. In the notation Ga,i for the supercurrents the

outer automorphism is SU(2) rotations of the i-index. In general this transformation is
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not a symmetry of the theory, as there is no corresponding conserved current generating it.

We will call it SO(4)outer = SU(2)outer
left ×SU(2)outer

right . We remind that the SO(4)R symmetry

rotates both the supercurrents and the R-currents Ji, J i, while SO(4)outer rotates only the

supercurrents. The full automorphism group of the algebra is G = SO(4)R × SO(4)outer.

5.1 N = (2, 2) subalgebras

An N = (4, 4) theory can of course be also seen as N = (2, 2). To pick an N = (2, 2)

subalgebra of the N = (4, 4) we have to do two things. First we have to choose a Cartan

generator of SU(2)Rleft and one of SU(2)Rright that we will identify with the U(1) R-charge

of the N = (2, 2) theory. This gives us a freedom of
(

SU(2)
U(1)

)
×
(

SU(2)
U(1)

)
. Notice that

the different choices can be related by an SO(4)R transformation which is a symmetry of

the theory, so they are essentially equivalent. Second, after we pick the direction of the

N = (2, 2) R-charge generators, we still have an extra
(

SU(2)
U(1)

)
×
(

SU(2)
U(1)

)
freedom to choose

which combination of the supercurrents G±+, G±− will be identified as the “standard”

supercurrents of the N = (2, 2) theory. The different choices of the supercurrents are

related by the outer automorphism SO(4)outer which is not a symmetry, so in general the

different N = (2, 2) subalgebras of this type will be inequivalent.

Notice that once we make the first choice and orient the U(1) × U(1) generators in

the SO(4)R, we completely fix which operators we will call chiral primaries (the operators

with (L0, L0) = (J3
0 , J

3
0)), independent of the remaining ambiguity in the choice of the

supercurrents. This is a consequence of the fact that for a superconformal primary the

following conditions are equivalent13

(L0 − J3
0 )|φ〉 = 0 ⇔ G++

−1/2|φ〉 = 0 ⇔ G+−
−1/2|φ〉 = 0 (5.1)

Even though the definition of a chiral primary does not depend on the choice of the su-

percurrents, its descendants do depend on it. So the inequivalent N = (2, 2) subalgebras

with the same SO(4)R orientation but with different SO(4)outer orientation have the same

chiral primaries, but different descendants.

5.2 Short representations

In this section we describe the short representations of the N = 4 algebra, i.e. those which

saturate the BPS bound [30] . For simplicity we will only discuss the representation on

the left-moving sector. To get a full representation of the N = (4, 4) algebra we have to

tensor a left with a right-moving representation. Short representations can be constructed

by starting with a chiral primary field and then acting on it with the generators of the

algebra. The conformal dimension and R-charge of a chiral primary satisfy

L0|φ〉 = J3
0 |φ〉 = q|φ〉 (5.2)

13Notice the difference in conventions between the normalization of the R-charge for the N = 2 and

N = 4 cases. In the N = 2 theories, the U(1) charge J is normalized to take integral values and the BPS

bound is L0 = J0/2. In the N = 4 conventions, which we are going to follow in the rest of this paper, the

eigenvalues of J3
0 are half-integers and the BPS bound is L0 = J3

0 .
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We use the notation (L0, J
3
0 ) = (q, q) for the conformal dimension and J3 charge. Such a

field is annihilated by the supercurrents

G++
−1/2|φ〉 = G+−

−1/2|φ〉 = 0 (5.3)

To construct the representation we first discuss the action of Ga,i−1/2 and J i0 on the highest

weight state. To start, we can act on φ with the lowering operator J−−
0 with respect to the

J3
0 charge. This gives us the fields (J−−)nφ with quantum numbers (L0, J

3
0 ) = (q, q − n).

Obviously we can act at most 2q times before the state is annihilated. This set of fields

forms a 2q + 1 dimensional spin-q representation of SU(2)Rleft, and they all have the same

conformal dimension.14 Also notice that these states are singlets of the SU(2)outer
left .

We can construct more states of the representation by acting on φ with one supercur-

rent. The only supercurrents that do not annihilate φ are G−+, G−− which mix under the

action of SU(2)outer
left . This way we get two states

|ψ+〉 = G−+
−1/2|φ〉, |ψ−〉 = G−−

−1/2|φ〉 (5.4)

These states have charges equal to (L0, J
3
0 ) = (q + 1

2 , q − 1
2 ) and they are a doublet of

the SU(2)outer
left . Acting on these states with J−− we can complete them into spin q − 1

2

representation of SU(2)Rleft.

Finally we can get new states acting on φ with two supercurrents. This gives the state

|Φ〉 = G−+
−1/2G

−−
−1/2|φ〉 (5.5)

It has (L0, J
3
0 ) = (q + 1, q − 1). It is a singlet of SU(2)outer

left . Acting on this state with J−−

we generate a spin q − 1 representation of SU(2)Rleft.

The full representation of the superconformal algebra is generated by taking confor-

mal descendants of the states described above. This is the structure of the typical short

representation. If we start with a chiral primary of low enough conformal dimension we

get special short representations that we review in the next subsection.

5.3 Special short representations

First we consider the shortest nontrivial representation. If we start with a chiral primary

with (L0, J
3
0 ) = (1

2 ,
1
2 ) and act with the supercurrents G−+, G−− we get two states with

(L0, J
3
0 ) = (1, 0). We cannot act again with the supercurrents since it would give a negative

value for the R-charge. The representation is terminated and is shorter than the typical

short representation. The two fields |ψ+〉 = G−+
−1/2|φ〉, |ψ−〉 = G−−

−1/2|φ〉 are singlets of the

SU(2)Rleft and a doublet of SU(2)outer
left . If we tensor them with a similar representation from

the right-moving sector we get fields with conformal dimension (L0, L0) = (1, 1) which

are singlets of SO(4)R, but which transform under SO(4)outer. These are the marginal

operators of the theory.

14We called the top component φ chiral primary, but each of the fields (J−−)nφ would also be “chiral

primary” under a different orientation of the J3 axis.
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Second let us consider the case where we start with a chiral primary |φ〉 with (L0, J
3
0 ) =

(1, 1). From the previous analysis we see that the state |Φ〉 = G−+
−1/2G

−−
−1/2|φ〉 has (L0, J

3
0 ) =

(2, 0). It is a singlet of SU(2)Rleft and also a singlet of SU(2)outer
left . If we tensor it with a

similar representation from the right-moving sector we get fields which have conformal

dimension (L0, L0) = (2, 2) and are singlets of the SO(4)R (and also singlets of SO(4)outer).

These fields are the leading irrelevant operators which are singlets under SO(4)R, so they

break the conformal invariance but not the N = (4, 4) supersymmetry. Notice that there

are no other SO(4)R singlet operators in the short multiplets of the algebra.

5.4 The moduli space of N = (4, 4) SCFTs

Let us now use the restrictions of the N = (4, 4) superconformal symmetry on the structure

of the moduli space. We review the well-known argument which completely determines the

local structure of the moduli space of any N = (4, 4) SCFT [12, 13].

As we saw before, motion on the moduli space is generated by descendants of chiral

primaries with (q, q) = (1
2 ,

1
2). Let us say that there are n multiplets of this form. Each

multiplet gives 4 real marginal operators so the dimension of the moduli space will be 4n.

The (local) holonomy on this space is in general SO(4n). However the marginal operators

come in groups of 4 from a single chiral primary. We want to take advantage of this fact

to restrict the holonomy of the moduli space. The chiral primaries φi of weight (1
2 ,

1
2) are

sections of a vector bundle and have themselves some holonomy. Also, to go from the

chiral primaries to the moduli, we have to act with the supercurrents. This means that the

marginal operators are sections of a bundle which is the tensor product of the bundle of

the chiral primaries with the bundle of the supercurrents. So the holonomy on the tangent

bundle will be the product of the holonomy for the chiral primaries and the holonomy of

the supercurrents. The latter contributes a factor of SO(4) associated to the SO(4)outer

ambiguity of the supercurrents. So the moduli space is a 4n dimensional manifold whose

holonomy K is reduced: K ∈ SO(4)×SO(n) ∈ SO(4n). Such manifolds are constrained by

Berger’s classification. After a few more easy arguments [13] we conclude that the moduli

space is a locally a homogeneous space of the form

SO(4, n)

SO(4) × SO(n)
(5.6)

This means that the local geometry of the moduli space is completely fixed by supersym-

metry, and can be determined if we know the number of marginal operators which fixes n.

In the case of AdS3/CFT2 we have n = 5 for X = T 4 and n = 21 for X = K3.15

Before we proceed, let us stress an important point. From each chiral primary φi with

(q, q) = (1
2 ,

1
2 ) we get marginal operators which are singlets of SO(4)R

G−r
−1/2G

−s
−1/2 · φi (5.7)

15Notice that the moduli space is of the same form for all values of the central charge, so it seems to be

independent of Q1, Q5. However we have not fixed the overall scale of the metric on the coset. This scale

does depend on the central charge.
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where r, s can take any value in {+,−} independently. We can also consider operators of

the form

G+r
−1/2G

+s
−1/2 · φi (5.8)

A very important property is that the tangent space of the moduli space is completely

spanned by the operators of the form (5.7) alone. The same is true about the operators

of the form (5.8). This can be roughly understood from the counting. The tangent space

of the moduli space has real dimension 4n. The set of operators of the form (5.8) has real

dimension 8n, but we have to impose a reality condition for the operator used to deform

the theory so we are left with half of them which is equal to 4n. It is not difficult to prove

this property from the commutation relations of the N = △,△ algebra.

Moreover, starting from a (cc) chiral primary φ of charge (1/2, 1/2) we can use the

SU(2)Rright to rotate it to a (ca) primary ψ of charge (1/2,−1/2). This will also lead to

marginal operators of the form

G−r
−1/2G

+s
−1/2 · ψi (5.9)

G+r
−1/2G

−s
−1/2 · ψi (5.10)

Again each of the two sets (5.7), (5.10) fully spans the tangent space. To summarize, from

each chiral primary φi with (q, q) = (1
2 ,

1
2) we get 4 real marginal operators which are

singlets of SO(4)R and which transform under SO(4)outer. These operators can be written

in different ways (5.7), (5.8), (5.9), (5.10).

From each chiral primary φi with (q, q) = (1, 1) we get a single real operator with

(L0, L0) = (2, 2) which is a singlet of SO(4)R × SO(4)outer. These are the only irrelevant

operators that exist which preserve global N = (4, 4) supersymmetry but which break

conformal invariance. We emphasize that this is a finite number of irrelevant operators.

6 The chiral ring of N = (4, 4) theories

Finally, we are ready to consider the moduli dependence of the chiral ring in N = (4, 4)

superconformal field theories.

6.1 Curvature of the N = (4, 4) algebra, the bosonic currents

We start with the curvature of the generators of the algebra. In principle their curvature

can take values in the automorphism group SO(4)R× SO(4)outer of the N = (4, 4) algebra.

To compute the curvature of the R-currents J i(z) we need the following 4-point function

〈Oµ(x)Oν(y)J
i(z)Jj(w)〉 (6.1)

where Oµ,Oν are marginal operators. As a function of z this 4-point function is holomor-

phic so it is completely determined by its singularity structure when J i(z) approaches the

other insertions. We have the following OPEs

J i(z)Oµ(x) = regular

J i(z)Jj(w) =
k

2

δij

(z − w)2
+ i

ǫijkJ
k(w)

z − w
+ . . .

(6.2)
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The proof of the first OPE is based on the fact that in an N = (4, 4) SCFT the marginal

operators are descendants of chiral primaries, see appendix G for details.

Since the OPE of a current with a marginal operator is regular, the only contribution

to the 4-point function is when the two currents come together. Then we have to use the

second OPE in (6.2). The second term of that OPE involves Jk(w) and is charged under

SO(4)R, so its 3-point function with the neutral marginal operators is zero. So only the

first term of the JJ OPE contributes and we find

〈Oµ(x)Oν(y)J
i(z)Jj(w)〉 =

k

2

gµνδ
ij

|x− y|4(z − w)2
(6.3)

where gµν is defined by the two point function

〈Oµ(x)Oν(y)〉 =
gµν

|x− y|4 (6.4)

The 4-point function (6.3) is symmetric in µ ↔ ν, and has no singularities as x, y → z,w

so the curvature of the R-currents, according to (3.29), is zero.

The conclusion is that there is no curvature for the SO(4)R symmetry over the moduli

space. From the AdS/CFT point of view this is according to our expectations. The R-

symmetry of the CFT corresponds to the isometry group of the three-sphere in AdS3 ×
S3 × K3. Intuitively we expect that changing the moduli of the compactification should

not induce a rotation of the S3. The CFT analysis verifies this intuition.

6.2 The supercurrents

The supercurrents are charged under both the R-symmetry SO(4)R and the outer automor-

phism SO(4)outer. We found that the R-symmetry does not have curvature over the moduli

space. However, as we will see the supercurrents mix among themselves by an SO(4)outer

rotation. In principle this curvature can be computed by an analysis of 4-point functions

of two supercurrents with two marginal operators, as in section 4.1. A faster way to derive

the answer is the following. In sections 5.3, 5.4 we explained that the marginal operators

are constructed by acting with supercurrents on chiral primaries of charge
(

1
2 ,

1
2

)
. If we

call GL,GR the bundles of left and right-moving supercurrents, V1/2,1/2 the bundle of chiral

primaries of charge
(

1
2 ,

1
2

)
and Ô the bundle of marginal operators, then clearly Ô is the

tensor product of the other three bundles

Ô = GL × GR × V1/2,1/2 (6.5)

Moreover, Ô is isomorphic to the tangent bundle TMCFT of the moduli space (5.6). The

connection on TMCFT is described by the spin connection on the coset (5.6) which takes

values in its isotropy group SO(4) × SO(n) = SU(2)L × SU(2)R × SO(n). From the tensor

product structure (6.5), it is clear that the connection of GL is given by the SU(2)L factor

of the connection of the tangent bundle, the connection of GR by SU(2)R and that of

V1/2,1/2 by the SO(n) factor. It should be easy to rederive this from a CFT computation

of the 4-point functions, as in section 4.1. The main point is that the supercurrents

have nonzero SO(4)outer curvature which is directly computable by the geometry of the

coset (5.6) without any further input from the dynamics of the CFT.
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6.3 The 3-point functions are covariantly constant

We denote by φi the chiral primary fields of the N = (4, 4) theory, that is, fields which are

Virasoro primaries and satisfy L0 = J3
0 , L0 = J0

3
. Their OPE has the form

φi(z)φj(w) = Ckijφk(w) + . . . (6.6)

where φk is also chiral primary and Ckij are the structure constants of the chiral ring. We

can also consider the 2- and 3-point functions related by

Cijk = 〈φi(0)φj(1)φk(∞)〉
gij = 〈φi(0)φj(∞)〉
Cijk = C lijglk

(6.7)

We want to compute how the chiral ring 3-point functions vary as we move on the moduli

space. For this we need to compute the 4-point function

〈O(z)φi(z1)φj(z2)φk(z3)〉 (6.8)

where O(z) is a marginal operator. We want to show that this 4-point function is zero.

What is important for the proof is that, as explained in section 5.4, for N = (4, 4)

theories any marginal operator can be written as the linear combination of descendants of

antichiral primaries16

O(z) = AjrsG
+r
−1/2G

+s
−1/2 · φj(z) (6.9)

where Ajrs are some appropriate constants.

Now we consider the Ward identity [31, 32]: on the sphere for a current G+r(w) of

dimension 3/2. For any set of primary operators ϕ we have

〈
∮
ξ(w)G+r(w)ϕi1(z1) . . . ϕin(zn)〉 =

n∑

i=1

ξ(zi)〈ϕi1(z1) . . . (Gr+−1/2 · ϕi)(zi) . . . ϕin(zn)〉 = 0

(6.10)

where ξ(w) is a globally defined holomorphic vector field of the form17

ξ(w) = aw + b (6.11)

where a, b are arbitrary complex numbers. Using this Ward identity we have

ξ(z)〈O(z)φi(z1)φj(z2)φk(z3)〉+ ξ(z3)〈
(
AjrsG

+s
−1/2 · φj(z)

)
φi(z1)φj(z2))(G

+r
−1/2 ·φk)(z3)〉 = 0

(6.12)

16Of course this is not true in (2, 2) theories, which is why in those theories we have ∇mCijk = 0, but in

general ∇mCijk 6= 0.
17We do not consider conformal killing vector fields of the form ξ(w) ∼ w2 for the following reason: since

G+r(w) has dimension 3/2 the correlator 〈G+r(w)ϕi1(z1) . . . ϕin
(zn)〉 falls-off like 1

w3 as w → ∞. So if we

do not want to have a contribution from infinity ξ(w) can be at most linear in w.
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where we used Gr+−1/2 · φi = Gr+−1/2 · φj = 0 since these fields are chiral primaries. Now if

we choose the vector field ξ(w) in (6.11) is such a way that ξ(z) = 1 and ξ(z3) = 0 we

immediately get

〈O(z)φi(z1)φj(z2)φk(z3)〉 = 0 (6.13)

Since the 4-point function vanishes for all marginal directions, following the definition of

the covariant derivative (3.18) we find that there is no need for any subtraction and the

covariant derivative of the 3-point function is zero. This means that the chiral ring is

covariantly constant

∇Ckij = 0, ∇Cijk = 0 (6.14)

where we obviously also have ∇gij = 0 since the connection is compatible with the met-

ric (3.24). This shows the non-renormalization of 3-point functions of chiral primaries.18

The result is valid for any N = (4, 4) theory, in particular in AdS3/CFT2 it is true not

only in the large N limit but even for finite values of N = Q1Q5.

6.4 Non-renormalization of extremal correlators

More generally the same argument can be used to show that extremal correlators of the form

〈φi1(z1) . . . φin(zn)φj(y)〉 (6.15)

are also not renormalized.19 For this we need the n+ 2-point function

〈O(z)φi1(z1) . . . φin(zn)φj(y)〉 (6.16)

where O(z) is a marginal operator written as the descendant of an antichiral primary (6.9).

We then follow the same steps as before. We use the Ward identity for the supercurrent

G+r by appropriately choosing ξ(w) to have the value one at z and zero at y. All the fields

at zi do not contribute since they are chiral primaries and they are annihilated by G+r
−1/2.

So the n+ 2-point function (6.16) vanishes

〈O(z)φi1(z1) . . . φin(zn)φj(w)〉 = 0. (6.17)

This means that the extremal correlator (6.15) is covariantly constant over the moduli

space and receives no renormalizations.

Of course the same argument cannot be applied if we have at the same time two or more

chiral fields and two or more antichiral fields since then we cannot choose ξ appropriately

to cancel all contributions.

18It might be possible to argue that certain correlators of short multiplets in N = (4, 4) SCFTs respect

an SO(4)outer selection rule, even though the latter is not a proper symmetry of the full theory, in analogy

with the “bonus” U(1)Y symmetry in N = 4 [9, 10]. From this selection rule the non-renormalization of

3-point functions would follow.
19We would like to thank R. Gopakumar and S. Minwalla for bringing this point to our attention.
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6.5 The curvature of chiral primaries

The chiral ring is a multiplication between chiral primaries. The chiral primaries themselves

are sections of bundles Vq with nontrivial connections. We showed that the multiplication

between these bundles

Ckij : Vp ⊗ Vq → Vp+q (6.18)

is covariantly constant. However this does not mean that the bundles are flat. In this

section we want to compute the curvature of the bundles of chiral primaries for N =

(4, 4) theories.

We proceed by using the fact that the N = (4, 4) algebra has many inequivalent

N = (2, 2) subalgebras. If we consider two marginal operators which are descendants of

the (cc) and (aa) ring of a specific N = (2, 2) subalgebra, we can compute the curvature

along these two directions by using the results of our analysis in section 4. Then by varying

the chosen N = (2, 2) subalgebra we can effectively scan all (pairs of) directions on the

moduli space and thus compute the curvature in all directions.

As we explained in section 5.1, to pick an N = (2, 2) subalgebra of the N = (4, 4)

theory, we first need to pick Cartan elements of the SO(4)R. Let us take them to be (J3, J
3
).

Then we have the SO(4)outer ambiguity in choosing the supercurrents. Following [33, 34]

we can define

Ĝ+(u) = u1G
++ + u2G

+−

Ĝ−(u) = u∗1G
−− + u∗2G

−+
(6.19)

for any complex numbers u1, u2 satisfying |u1|2 + |u2|2 = 1. Then the currents

T (z), Ĝ±(z), J3(z) satisfy the standard N = 2 superconformal algebra OPEs. We can

do the same on the right-moving sector where we also have to choose complex numbers

u1, u2 satisfying |u1|2 + |u2|2 = 1. Let us combine all these complex numbers in the symbol

U = (u1, u2, u1, u2). Now consider the marginal operators

O(U ,i) =
1

2
Ĝ−(u)Ĝ

−
(u) · φi

O(U ,j) =
1

2
Ĝ+(u)Ĝ

+
(u) · φj

(6.20)

where φi are (cc) fields and φj are (aa) fields. The curvature along any pair of marginal

operators of this form can be computed from the tt∗ equations and we have

[∇(U ,i),∇(U ,j)] = [∇(U ,i),∇(U ,j)] = 0

[∇(U ,i),∇(U ,j)] = gijgkl

(
1 − 3

c
(q + q)

)
− [Ci, Cj]

(6.21)

for all possible U ’s and where ∇(U ,i) denotes the covariant derivative with respect to the

marginal operator O(U ,i). By varying U these equations give us the curvature in all possible

directions of the moduli space. In other words, if we want to compute the curvature of

the bundle of chiral primaries along two specific tangent vectors on the moduli space, then

there is enough freedom to rewrite the curvature operator in those direction as a linear
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combination of the curvature along pairs of vectors where for each pair the factor U is the

same and we can use (6.21). Crucial here is the observation that for any U1 and U2, we

can always rewrite O(U2,i) as a linear combination of O(U1,i) and O(U1,i).

6.6 Real structure of the chiral ring

In N = (4, 4) theories it is more convenient to use a real basis for the chiral ring. Consider

the (cc) primaries φi of charge (q, q). We can transform them into (aa) fields in two ways.

First, we can take the hermitian conjugate

φ→ φi ≡ φ†i (6.22)

Second, we can rotate them using the SU(2)Rleft × SU(2)Rright

φi → φ̃i =
1

Tq,q
(J−−)2q(J

−−
)2q · φi (6.23)

where Tq,q is a real normalization factor chosen in such a way that the norm of |φi〉 equals

the norm of |φ̃i〉. These two procedures generate the same set of (aa) fields, so there must

be a matrix M relating the two

φi = M j

i
φ̃j (6.24)

where M must satisfy

MM∗ = I. (6.25)

It is convenient to pick a basis φI , I = 1, . . . , n for the (cc) fields in which M j

i
= δj

i
. Then

(φI)
† =

1

Tq,q
(J−−)2q(J

−−
)2q · φI , (6.26)

In this basis the metric GIJ becomes real, and by a second (real) change of basis we can

take it to be δIJ

〈φI(z)φJ (w)〉 =
δIJ

|z − w|4 (6.27)

Moreover, in this basis the chiral ring coefficients are also real

φI(z)φJ (w) = CKIJφK(w) + . . .
(
CKIJ

)∗
= CKIJ

(6.28)

Notice that since the action of J−− does not change under parallel transport (since we

computed that the curvature of the currents J i is zero), and also the action of the † on

operators is unambiguously defined, it means that the choice of a real basis is invariant

under parallel transport. The bundles Vq of chiral primaries are actually real vector bundles

in the case of N = (4, 4) theories.20

20Notice that when we say “real basis” we do not mean that the operators φI satisfy φI = φ†
I , which

is impossible for operators of definite nonzero R-charge. Instead what we mean is that in this basis the

inner product and the chiral ring coefficients between these operators become real. The actual operators

remain “complex”, or geometrically the (p, q) differential forms in the target space corresponding to the

chiral primaries are still complex forms.
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6.7 Final expression for the curvature

Now let us consider the tangent space of the moduli space (5.6). The holonomy group is

SO(4) × SO(n), so it is convenient to pick a vielbein basis where the tangent vectors are

decomposed as Xµ = Xa,I , where a transforms under SO(4) and I under SO(n). These

tangent vectors correspond to marginal operators, which can be written as descendants of

chiral primaries of charge (1/2, 1/2) as in (5.7). The index I is associated to the chiral

primary φI of charge (1/2, 1/2) in the real basis described above, while the index a is

related to the combination of the supercurrents G−± and G
−±

that we act with on the

chiral primary to get the marginal operator. From (6.21) it is easy to see that curvature

of the bundle of chiral primaries in a real basis has the form

(Rµν)
N
M = δabδIJδ

N
M

(
1 − 3

c
(q + q)

)
− δab

(
CKIMδKLC

L
JP δ

PN − δMPC
P
JKδ

KLCNIL
)

(6.29)

where the indices µ = (a, I), ν = (b, J) denote two tangent directions µ, ν decomposed into

their SO(4) × SO(n) factors.21 Notice that from R-charge conservation, if the fields M,N

have charge (q, q) then the sum over K,L in the second term of (6.29) runs over fields with

charge (q+ 1/2, q + 1/2), while in the third term over fields with charge (q− 1/2, q − 1/2).

So the curvature of the chiral primaries of given charge is determined by the chiral ring

coefficients of them with those which are one unit of charge higher and one unit of charge

lower. The curvature can be written as

Rµν = δabδIJ

(
1 − 3

c
(q + q)

)
− δab(CIC

T
J − CTJ CI) (6.30)

Where we have not shown the matrix indices M,N on the curvature operator and it is

always implied that µ = (a, I), ν = (b, J). We will continue to use this condensed notation

in the rest of this section and hope it will not cause any confusion.

We remind that for the 3-point functions we have

∇CKIJ = 0. (6.31)

21 Notice that the first term in the curvature is symmetric in µ, ν, which seems unacceptable for a curvature

operator. However this term should precisely cancel the symmetric part of the second term, so that the total

expression for the curvature is actually antisymmetric. Some simple examples of these cancellations were

seen in section 4.4. While the antisymmetry of the curvature operator is guaranteed from general principles

(since the connection is compatible with the Zamolodchikov metric) it is not manifest in the form (6.29).

A small check is to consider the trace of the curvature, that is the case I = J . Then we can see from the

target space point of view that the term (CIC
T
J −CT

J CI) is proportional to the commutator [L, Λ] where the

operator L is multiplication with the Kähler form and Λ the adjoint operator. From standard arguments

this is a commutator of the Lefschetz SU(2) algebra where J+ = L, J− = Λ, J3 = (q + q − dim(M))/2

where dim = c/3 is the complex dimension of the target space and the operators are acting on (q, q) forms.

Thus we have [L, Λ] = (q + q − dim(M))/2. Then the trace of the second term in (6.29) is proportional to

the first term up to a factor of c/3. This factor is explained in the following way: we have normalized the

φI , φJ operators so that their 2-point function is (6.27). On the other hand the two point function of the

Kähler form should be proportional to c/3, as can be seen from the current correlator 〈JJ〉 ∼ c/3. Taking

this factor into account we find that the trace of 6.29 exactly cancels.
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6.8 Geometry of the bundles

Since all the quantities appearing on the right hand side of (6.29) are covariantly constant,

it means that the curvature operator is also covariantly constant

∇Rµν = 0. (6.32)

Bundles of covariantly constant curvature over homogeneous spaces, such as the moduli

space (5.6), are called homogeneous bundles. It is a mathematical theorem [35] that the

connection on homogeneous bundles is completely determined by the connection on the

tangent bundle of the underlying base space, in our case (5.6). Each homogeneous bundle

is characterized by a representation R of the holonomy group SO(4) × SO(n) and the

connection on it is the same as that of the tangent bundle but in the representation R.22

Actually, from the expression (6.30) for the curvature we see from the factor δab that the

SO(4) representation is always the trivial one.

So finally, the geometry of the bundle Vq of chiral primaries of charge q is completely

characterized by a (possibly reducible) representation R of SO(n). To determine the rep-

resentation we have to consider the SO(n) part of the curvature operator

(CIC
T
J − CTJ CI)

N
M (6.33)

This has to decompose into representations Rk of SO(n). Then the bundle of chi-

ral primaries of charge q is the direct sum of homogeneous bundles corresponding to

these representations

Vq =
∑

k

⊕VRk
(6.34)

The geometry of each of VRk
is completely fixed by the geometry of the coset

SO(4, n)

SO(4) × SO(n)
(6.35)

and some basic group theory which is completely independent of the dynamics of the

CFT. For example, the chiral primaries of charge (1/2, 1/2) always transform in the vector

representation of SO(n) and the corresponding bundle V(1/2,1/2) has curvature of the form

Rµν = −fδabΣIJ (6.36)

where (ΣIJ)
N
M are matrices in the vector representation of the SO(n) algebra, that is

they satisfy

[ΣIJ ,ΣKL] = δJKΣIL + δILΣJK − δJLΣIK − δIKΣJL (6.37)

and f is a numerical constant which depends on the overall scale of the coset (6.35).

In the case of the D1/D5 CFT f is inversely proportional to the central charge of the

22If L is the vector space that carries the representation R then the vector bundle is explicitly constructed

as (SO(4, n) × L)/(SO(4) × SO(n)).
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theory. Similarly for a bundle in the representation R we have matrices ΣR
IJ of the SO(n)

algebra (6.37) and the curvature operator VR is

Rµν = −fδabΣR
IJ . (6.38)

Notice that from the fact that the marginal operators are descendants of the (1/2, 1/2)

chiral primaries and using the curvature (6.36) for these fields and the corresponding

curvature for the supercurrents we get the following expression for the curvature of the

marginal operators

(Rµν)
λ
κ = f

(
(σab)

d
c(δIJ)

L
K − (δab)

d
c(ΣIJ)

L
K

)
(6.39)

where σab is the vector representation of SO(4) and again we use the notation µ = (a, I), ν =

(b, J), κ = (c,K), λ = (d, L). It is easy to recognize that (6.39) is the curvature of the

tangent bundle of the coset (6.35) in a vielbein basis and where f controls the overall size

of the manifold.

In practice, if we can compute the curvature operator from the 3-point functions at

one point of the moduli space then we can find the decomposition of chiral primaries into

representations of SO(n) and fix the geometry of the bundles, at least in a neighborhood of

the point. For example in AdS3/CFT2 such a point could correspond to the orbifold CFT.

6.9 Example: IIB on K3

Let us now explain how the previous arguments apply to the case of IIB on AdS3×S3×K3.

This is the near horizon geometry of a bound state of Q1 D1 and Q5 D5 branes wrapped

on K3. The boundary conformal field theory is believed to be described by a deformation

of a supersymmetric sigma model whose target space is the orbifold K3N/SN , where N =

Q1Q5. The moduli space is locally the coset

SO(4, 21)

SO(4) × SO(21)
(6.40)

The holonomy of the tangent bundle of the moduli space is SO(4)×SO(21). As we explained

before, the connection on the vector bundles of the chiral primaries will be associated to

that of the tangent bundle and in particular to its SO(21) part. So each of these bundles

will be characterized by a representation R of SO(21).

The chiral primary states of this theory can be conveniently encoded in the Poincaré

polynomial23

Pt,t = Tr
(
t2J0t

2J0

)
(6.41)

where the trace is taken over the space of chiral primaries. The chiral primary states

are related to harmonic forms in the target space and it can be shown that the Poincaré

polynomial equals

Pt,t =
∑

p,q

hp,qt
p t
q

(6.42)

23This is in the N = 4 conventions where the normalization of J0 is half-integral.
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where hp,q are the Hodge numbers of the target space. The Hodge numbers of K3 are

equal to
1

0 0

1 20 1

0 0

1

(6.43)

Starting with the single K3, it is possible to compute the Hodge numbers of the resolution

of K3N/SN from the generating function [36]

∑

N≥0

QNPt,t(K3N/SN ) =

∞∏

m=1

∏

p,q

(
1 + (−1)p+q+1Qmtp+m−1t

q+m−1
)(−1)p+q+1hp,q

. (6.44)

From this expression we can compute the numbers of chiral primaries of given conformal

dimension in the SCFT. As we mentioned before these numbers agree with the results

obtained from supergravity.

Now let us look at the low lying chiral primaries and sketch how they fit into vector

bundles over the moduli space. For large enough N the even Hodge numbers (all odd

numbers are zero) of the Hilbert scheme K3/SN are

. . . .

. . . .

1 22 276 2278 276 22 1

1 22 254 22 1

1 21 1

1

(6.45)

Let us see how we can represent these chiral primaries in the orbifold CFT language [37, 38].

We introduce bosonic creation operators αA−n, where n = 1, 2 . . . labels the level of the

twisted sector and A runs over the Dolbeault cohomology classes of a single K3. For a

given (p, q), there are dimH(p,q)(K3) operators α
(p,q)
−n . The general chiral primary can be

written as
M∏

i=1

αAi
−ni

|0〉,
M∑

i

ni = N. (6.46)

The R-charge of this operator is

(
J3, J

3
)

=
1

2

(
N −M +

∑

i

pi, N −M +
∑

i

qi

)
. (6.47)

There is only one operator of charge (0, 0) which we will denote by |N〉. It is given by the

product |N〉 ≡ ∏N
i=1 α

0,0
−1|0〉; clearly, this is to be identified with the identity operator and

of course there is no holonomy for it. We have a single operator of charge (1, 0), which may

be represented as α2,0
−2|N − 1〉. The operator with charge (0, 1) is similarly represented by

α0,2
−2|N −1〉. They correspond to the R-symmetry currents J3, J

3
. As we saw in section 6.1

the holonomy for these operators is also trivial.
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Now we consider the 21 operators of charge (1
2 ,

1
2 ). They are given by the following

products of creation operators

20 × α
(1,1)
−1 |N − 1〉 and 1 × α

(0,0)
−2 |N − 2〉 . (6.48)

From this we conclude that the operators of charge (1
2 ,

1
2) fall into the vector representation

21 of SO(21).24 The connection of this bundle over the moduli space is the same as the

SO(21) part of the tangent bundle of (6.40). Acting on a each of these states with one

left-moving and one right-moving supercurrent gives the 4 × 21 = 84 marginal operators.

At higher conformal dimension, we have to distinguish between single-particle and

multi-particle chiral primaries. A multi-particle field is given by the product of chiral

primaries of lower charge, while a single-particle operator is a genuinely new chiral primary

appearing at the given conformal dimension. For example if we look at the operators of

charge (1, 1) we have 254 of them. We can have multi-particle states of the form (1/2, 1/2)×
(1/2, 1/2) which are (21×22)/2 in number, or of the form (1, 0)× (0, 1), which is one state.

So in total we have 232 multi-particle operators at this level and 22 single-particle ones.

The multi-particle states will obviously fall into tensor product representations of

SO(21) determined by their decomposition into single-particle operators. The correspond-

ing bundles are isomorphic to the tensor product of the bundles of their constituents. Hence

the new information at each level is related to the the bundles of chiral primaries which

are single-particle operators.

More generally, form small enough compared to N , we have single-particle operators of

total charge m only when the charge is of the form 1
2(m,m), 1

2(m+1,m−1) or 1
2 (m−1,m+

1). The single-particle operators25 with charge 1
2 (m,m) can be represented in the form

α
(0,0)
−m−1|N −m− 1〉, α

(1,1)
−m |N −m〉, α

(2,2)
−m+1|N −m+ 1〉. (6.49)

so there are 1 + 20 + 1 of them. Our natural guess is that they decompose as 21 + 1 of

the SO(21). In principle we could compute their 4-point function at the orbifold point and

check whether this is indeed true. For 1
2 (m+ 1,m− 1) and 1

2(m− 1,m+ 1) we have

α
(2,0)
−m |N −m〉, α

(0,2)
−m |N −m〉 (6.50)

respectively. They are obviously in the 1 of SO(21).

To summarize, we denote by V21 the unique real vector bundle of rank 21 over the

moduli space (6.40) whose connection is the same as the SO(21) part of the tangent bundle.

The curvature of this bundle of the form (6.36). We denote by V1 the trivial bundle of rank

one and Vmulti the tensor product of vector bundles corresponding to the lower conformal

dimensions. We have the following answer for the geometry of the vector bundle Vp,q of

24Another possibility is that they might be 21 singlets of SO(21). However we know that we get the

marginal operators as descendants of these chiral primaries, and the marginal operators transform under

SO(21), so this possibility is excluded.
25Notice that we are not careful about the precise linear combinations that gives us the single- vs multi-

particle operators since we are only interested in their counting and not the actual operators.
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chiral primaries of charge (p, q) with p, q > 1

Vp,q =





Vmulti ⊕ V21 ⊕ V1, if p = q,

Vmulti ⊕ V1, if p = q + 1 or q = p+ 1,

Vmulti, otherwise.

(6.51)

Interestingly, if we look at the Fock space (6.46) then according to the previous discussion

for each fixed N > 1 it should carry a representation of SO(21). This representation is

certainly not manifest. There is an obvious action of SO(20) which rotates the αA−n with

A the 20 (1, 1)-forms into each other and leaves the other αA−n fixed. The extra operators

which extend SO(20) to SO(21) must be more complicated. If we also introduce the positive

modes of the bosons with commutation relations

[αA−n, α
B
m] = mδn,m

∫

K3
A ∧B (6.52)

then the SO(20) generators can be written as quadratic operators in the modes of the

bosons. However, the extra SO(21) generators must be at least cubic. It would interesting

to construct these generators explicitly and study their precise algebraic and geometri-

cal meaning.26

Let us also notice that for given m, a single particle operator is a map from the

cohomology of K3, H∗(K3), to the cohomology of the symmetric product H∗(SymN (K3)).

In section 6.10 we will see how the chiral primaries can be identified with operators in

the 4-dimensional gauge theory, which can also be interpreted as forms on the instanton

moduli space.

6.10 Chiral primaries in 4d gauge theory

In the previous subsection, the chiral primaries of the 2d sigma model were considered. The

target space of the sigma model is the moduli space M of instantons of 4d gauge theory

on K3. Therefore, we might expect that the 2d chiral primaries have analogues in the

gauge theory. Such a connection is potentially interesting since we might be able to learn

more about the geometry of the chiral ring by the computation of gauge theory quantities

like Donaldson polynomials. On the other hand, it might be useful for an analysis of

the geometry of the chiral ring of the superconformal 4d gauge theory, see also section 9.

The gauge theory can be obtained by wrapping the D5-brane system on T 2 ⊗ K3, and

considering the limit where the typical length scale of the T 2 is much smaller then the one

of K3. In this way one ends up with N = 4 Yang-Mills theory on K3.

The correspondence between the 2d and 4d operators can be understood more precisely

if we recall the representation of Donaldson polynomials in terms of the fields of N = 2

gauge theory in [39]. See also [16] for a discussion of Donaldson polynomials in the context

of AdS/CFT. Similar to the interpretation of the single particle operators αAi
−n as differential

forms on M in section 6.9, the Donaldson polynomials can be viewed as differential forms

on M. By a comparison of the infinitesimal deformations of an instanton solution and the

26As mentioned before, we believe that a class of correlators of short multiplets may respect an

SO(4)outer × SO(21) selection rule as in [9, 10]. It would be interesting to clarify this point.
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supersymmetry transformations, ref. [39] assigns a form degree on M to the gauge theory

fields. This degree corresponds to the charge under a U(1) subgroup of the R-symmetry

group. The R-symmetry group of N = 4 Yang-Mills is SU(4), which can be decomposed as

SU(2)×SU(2)×U(1). The charge of a field under the last U(1) provides its form degree on

M. The field content of the theory is a gauge field Aµ, six scalars φi and fermions. Four of

the scalars and Aµ have U(1)-charge 0, the two other scalars have charge +2 and −2, and

the fermions have charges +1 or −1. The sixteen supersymmetry generators can be divided

in two sets of eight, based on their U(1)-charge ±1. The SU(2)-holonomy of K3 preserves

half of the susy generators in both sets. We denote the preserved susy generators by Q±I
α ,

where ± denotes the U(1)-charge, α labels the space-time SU(2) which is preserved by the

K3 holonomy, and I = 1, 2. A susy generator with charge +1 plays often a distinguished

role, namely when it is taken as the generator of a topological symmetry after twisting of

the theory.

This also distinguishes the scalar with U(1)-charge 2 (which we denote by σ). This

scalar is namely annihilated by the susy generators with charge +1, because a field with

charge +3 does not exist. These susy generators are the analogues of the operators G+±
−1/2

and Ḡ+±
−1/2, which annihilate the states of the chiral-chiral ring. Among the operators which

are the analogues of the states in the chiral-chiral ring are thus Wm
0 = Tr (σm). These are

not all the operators which are annihilated by Q+I
α . As explained in [39], one can construct

descendants Wm
k of Wm

0 , such that dWm
k ∼

{
Q+I
α ,Wm

k+1

}
. These forms are given by

Wm
0 = Tr (σm) , Wm

2 = Tr
(
σm−1 ∧ F

)
, Wm

4 = Tr
(
σm−2 ∧ F ∧ F

)
, (6.53)

where we have ignored the fermions. Since K3 does not contain odd-dimensional cycles,

only those descendants are given which are related to even forms. Since acting with Q+I
α

results in a total derivative, the following non-local operators are invariant under Q+I
α :

∫

Ai

Wm
2 , and

∫

K3
Wm

4 , (6.54)

where the Ai form a basis of the 22 two-cycles of K3. Since F is a zero-form on M and σ

a two-form, these operators are respectively 2m− 2, and 2m− 4 forms on M.

We have now constructed the set of operators, which are dual to the operators αAi
−n.

e.g. the operators in eq. (6.48) together with the currents J3 and J
3

have total charge 1,

and are thus two-forms on M. These operators correspond to integrated descendants of

Tr(σ2) and Tr(σ3). They are explicitly given by

22 ×
∫

Ai

W 2
2 , and 1 ×

∫

K3
W 3

4 . (6.55)

These are therefore the counter parts of the 23 chiral primaries with total charge 1 in

section 6.9. It is conceivable that the two-cycles Ai, whose Poincaré dual is a (1, 1)-

form, correspond to the 20 operators in (6.48). We can easily go further and include the

chiral primaries with larger charges. The single particle operators with total charge m

in section 6.9 correspond to 2m-forms on M. These 2m-forms on M correspond to the
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appropriate descendants of Tr(σm), Tr(σm+1) and Tr(σm+2), namely

1× Wm
0 , 22 ×

∫

Ai

Wm+1
2 , and 1 ×

∫

K3
Wm+2

4 . (6.56)

Thus we have shown above that the chiral primaries of 2d CFT can be identified with

operators in N = 4 Yang-Mills. The marginal operators in section 6.9 are obtained by

acting with the operators G−±
−1/2 and Ḡ−±

−1/2. These operators correspond in the gauge

theory to the generators Q−I
α with U(1)-charge −1. As mentioned before, we can also

identify the gauge theory chiral primaries in terms of αAi
−1. For example, the operator

Tr(σ2), mentioned in section 9 as the gauge theory chiral primary, which has as descendant

a marginal operator, corresponds to α
(2,2)
−1 .

7 Attractor mechanism and RG-flow

One of our original motivations for studying the moduli dependence of the chiral ring in

N = (4, 4) theories, was its possible relevance for the analysis of the connection between

the attractor flow in supergravity and RG-flow in the dual field theory. The attractor

mechanism is usually studied in the case of 4-dimensional extremal black holes, but more

generally it also appears for extremal branes of other dimensionalities. The attractor

mechanism is a consequence of the extremality of the brane and not of supersymmetry [40–

42], however it is technically easier to study in the supersymmetric case. To keep our

discussion simple, we will only consider the cases of spherically symmetric flows and will

ignore all subtleties related to multiple attractor points, walls of marginal stability and

split-flows. Obviously it would be extremely interesting to understand such phenomena

from the RG-flow point of view but this is beyond the scope of our simple analysis.

7.1 The attractor mechanism

Consider a supergravity theory in D dimensions with a moduli space Msugra in which the

massless scalar fields take values. We pick coordinates z on Msugra. The metric on the

moduli space is gab(z). We assume that the theory admits BPS p-brane solutions, charged

under (p + 2)-form field strengths. The charge Γ of these branes takes values in a lattice

Λ. A very useful quantity is the spacetime central charge of the brane

Z(Γ, z) (7.1)

which is determined by the supersymmetry algebra27 and is a function of the charge vector

Γ and the position on the moduli space z. If we call z∞ the values of the moduli at infinity,

then the ADM mass/tension of the black brane in D-dimensional Planck units is equal to

MADM = |Z(Γ, z∞)| (7.2)

In the supergravity solution the moduli z evolve radially reaching constant values z∗ near

the horizon. The value z∗ depends only on the charge Γ of the brane and not on the values

27For simplicity we assume that there is only one complex central charge.
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of the moduli at infinity z∞. This is the attractor mechanism. The condition for z∗ to be

an attractor point is that is minimizes the central charge Z

∂|Z|
∂zi

|z=z∗ = 0 (7.3)

For every charge vector Γ ∈ Λ, there is a submanifold of solutions of (7.3)

M∗,Γ
sugra ∈ Msugra (7.4)

of attractor points, that we call the attractor submanifold for the charge vector Γ.28 The

radial evolution of the moduli from their value z∞ at infinity to z∗ at the horizon is governed

by the attractor flow.

For example, for a spherically symmetric 4d black hole in N = 2 supergravity we have

the ansatz

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + r2dΩ2

2

)
(7.5)

For supersymmetric solutions we can write first order flow equations for U(r), za(r). It

is more convenient to work with the coordinate τ = 1/r. This leads to the following

flow equations

U̇ = −eU |Z|
ża = −2e2Ugab∂b|Z|

(7.6)

Similar relations hold for black branes of higher dimensionality.

7.2 Relation to RG-flow

The attractor black holes discussed in the previous section can be realized in string the-

ory by bound states of D-branes. In this description the D-branes are placed in a flat

background space, where the values of the scalar moduli are equal to their asymptotic

values z∞. The supergravity solution arises after backreaction and then we see the attrac-

tor mechanism in the radial evolution of the moduli. We want to understand what is the

meaning of the attractor mechanism in the original D-brane picture.

The open string excitations on the worldvolume of the D-branes can be described in

an appropriate regime by an effective quantum field theory. The background values z∞ of

the closed string moduli enter the worldvolume theory in the form of coupling constants.

We will call the set of parameters of the effective field theory on the branes MQFT, which

we will (loosely) identify with Msugra. The supergravity description of the same system

has an AdS throat in the near horizon region, which indicates that the worldvolume theory

flows to a conformal field theory in the IR. Moreover, in the near horizon region the moduli

reach their attractor values z∗.

28Usually we speak of attractor points and not submanifolds, however even in the familiar case of black

holes in 4d N = 2 theories, the vector multiplets are fixed by the attractor mechanism to isolated points,

while the hypermultiplets can take any value. In this case Msugra = Mvector × Mhyper and the attractor

submanifold will be M∗,Γ
sugra = {p} × Mhyper, where {p} ∈ Mvector is the attractor point for the charge Γ.
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This suggests that the IR fixed point of the worldvolume theory only knows about the

attractor values of the moduli, hence the moduli space MCFT of the conformal field theory

has to be identified with the attractor submanifold M∗,Γ
sugra in supergravity. In other words

if we flow to the IR, the number of parameters of the worldvolume theory is generally

reduced leaving us with MCFT ⊂ MQFT. It is reasonable to assume that the way in

which the UV coupling constants on the D-brane theory transform into the effective IR

ones is by renormalization group flow. In this sense the D-brane theory sees the attractor

mechanism as RG-flow on its worldvolume. Then it is natural to expect that the attractor

flow equations (7.6) will play the role of RG-flow equations in the space of effective coupling

constants of the D-brane theory.

The RG-flow of the worldvolume theory is governed by the β functions, which describe

the flow of the coupling constants as a function of the energy scale. More precisely the

β functions correspond to a vector field on the space of parameters of the theory MQFT.

The flow lines of this field give RG-flow orbits which, for the class of the theories we are

considering, approach conformal fixed points at low energies where β = 0. The set of these

points constitute the moduli space MCFT of conformal theories inside the bigger space

MQFT of effective quantum field theories. Similarly the attractor flow equations (7.6)

describe the radial flow of the moduli in gravity from Msugra to the submanifold M∗,Γ
sugra.

The two pictures are consistent if we accept the usual AdS/CFT intuition that the radial

direction corresponds to the energy scale. The statement that more than one value of the

moduli at infinity flow to the same value near the horizon is related to the fact that more

than one UV quantum field theories can flow to the same IR fixed point.

It would certainly be very interesting to understand this connection in more detail,

however making this intuitive picture more precise is not straightforward. Besides the fact

that the worldvolume theory is generally strongly coupled, there is an important conceptual

difficulty, that away from the conformal point in the IR, i.e. away from the strict α′ → 0

limit, the theory on the branes is not decoupled from the closed string modes in the bulk.

While the absence of a decoupling limit may be a serious obstacle for a precise formu-

lation of the attractor flow/RG-flow relation it should be possible to work in a perturbative

expansion around the conformal point, i.e. to first order away from the α′ → 0 limit. There

it should be possible to study the relation between attractor flow and RG-flow reliably. In

the rest of this section we will only consider the first order flow and leave the more difficult

study of finite flows for future work.

Our goal is to start from the conformal point and consider a first-order perturbation

towards the UV. At the conformal point we have the AdS/CFT duality between the AdS

factor of the near horizon geometry and the conformal IR fixed point of the D-brane theory.

To see the attractor mechanism we have to flow from the near horizon geometry towards

asymptotic infinity. In the boundary theory this means that we have to study the IR

conformal field theory perturbed by irrelevant operators (see [43] for a similar discussion

in the case of AdS5/CFT4). Perturbing a field theory by irrelevant operators is dangerous

since it drastically modifies its UV behavior. However, since we are only interested in

the first order flow away from the fixed point we will treat the conformal field theory

perturbed by irrelevant operators as an effective field theory and study RG-flow in the

Wilsonian sense, even though we do not have a UV completion of the theory.
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In supergravity the entire attractor flow solution preserves the same amount of su-

persymmetry and spherical symmetry as the near horizon geometry29 so on the boundary

theory we will only consider perturbations by irrelevant operators which do not break the

supersymmetry and R-symmetry of the CFT but only conformal invariance. As we will see

in our toy model, this constrains the number of allowed irrelevant operators to a finite set.

Now we would like to make more precise the statement that the attractor flow and

RG-flow agree to first order away from the fixed point. As we can see in figure 1 this means

that the structure of the flow on the two sides should be the same in a neighborhood of the

fixed submanifolds MCFT,M∗,Γ
sugra. The “zeroth-order” matching of the two sides relates the

geometry of the fixed submanifolds. This is a consequence of the AdS/CFT correspondence

between the near horizon geometry of the extremal brane and the conformal field theory

in the IR of the D-brane theory. So, at least locally, we must have30

M∗,Γ
sugra = MCFT (7.7)

This is statement about the dimensionality as well as the geometry of the two manifolds.

The metric on M∗,Γ
sugra is fixed by the metric gab on the moduli space Msugra, but see also

footnote (4). The metric on MCFT is determined by the Zamolodchikov metric of marginal

operators in the CFT, which correspond to tangent vectors on MCFT.

The next step is to consider the first order flow towards the UV. For the two sides

to be in agreement, the number of allowed irrelevant operators must be the same as the

codimension of the attractor submanifold inside the full moduli space of supergravity-which

is equal to the number of fixed moduli. Also the conformal dimension of the irrelevant

operators must be related to the mass of the fixed moduli in the near horizon geometry by

the standard mass/conformal dimension relation in AdS/CFT.

Moreover, the identification between the attractor flow and RG-flow suggests that there

should be a relation between the two parameter spaces, not only on the fixed submanifolds

but also away from them, at least to first order. A way to state this more precisely is that

the normal bundle Nsugra of the attractor submanifold M∗,Γ
sugra inside Msugra should have

the same structure as the normal bundle NCFT of MCFT in MQFT

Nsugra = NCFT (7.8)

The geometry of the bundle NCFT encodes how the CFT can be perturbed by irrele-

vant operators (which preserve certain symmetries). Its geometry is characterized by the

Zamolodchikov metric and the connection for the irrelevant operators in the CFT. Notice

that the identification (7.8) of the normal bundles requires not only a matching of their

ranks, which is guaranteed if the number of irrelevant operators is the same as the number

29Except for the extra supercharges that we get in the AdS region which are dual to the superconformal

generators in the CFT.
30This has been demonstrated in the case of AdS3/CFT2 with 16 supercharges. It would be interesting

to prove the same statement for the (0, 4) MSW theory or even for 4d black holes. A naive approach would

suggest that the moduli space of of the “superconformal quantum mechanics” on the D-branes should be

related to the attractor submanifold, which in this case coincides with the hypermultiplet moduli space.

We hope to address this question in the future.
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of fixed moduli, but also a matching of the connections on the two bundles. The connection

on Nsugra is easily computable if we know how M∗,Γ
sugra is embedded in Msugra, while the

connection on NCFT in the CFT equals the connection for the irrelevant operators over the

moduli space as was explained in section 3.

These three conditions, identification of moduli spaces (7.7), of number/dimension

of irrelevant operators to number/mass of fixed moduli, and identification of the normal

bundles (7.8) is enough to guarantee the identification of attractor flow to RG-flow to first

order away from the conformal fixed point. As we see all these quantities can be computed

within the CFT, so unless we want to go to higher orders in perturbation theory, we do not

have to worry about the UV completion of the theory and issues related to the decoupling

of closed string modes.31

7.3 The D1/D5 system

The simplest system where we could try to check the attractor flow/RG-flow connnection

is the D1/D5 bound state.32 We start with IIB compactified on K3. This leads to chiral

(2, 0) supergravity in 6 dimensions [44], whose moduli space is

Msugra =
SO(5, 21)

SO(5) × SO(21)
/SO(5, 21,Z) (7.9)

This moduli space corresponds to the geometric moduli of K3, the NS and RR potentials

and the dilaton.

Six dimensional supergravity admits BPS black string solutions preserving 8 super-

charges, charged under the 3-form field strengths. These solutions correspond to bound

states of D5/NS5 branes wrapping the entire K3, D3 branes wrapping 2-cycles of K3

and F1/D1 strings. The charges of the black strings take values in the lattice Γ5,21. The

discrete U-duality group SO(5, 21,Z) of the theory is equal to the automorphism group

of the charge lattice. For any primitive lattice vector, there is always a U-duality trans-

formation that can rotate it into a bound state of only D1 and D5 branes. The charge

lattice Γ5,21 can be embedded inside the vector space W = R
5,21. Each point z on the

moduli space (7.9) corresponds to a decomposition into positive and negative subspaces

W = V+ ⊕ V−, so the moduli space of supergravity can be understood as the space of

positive 5-planes inside R
5,21.

31We would like to emphasize that we are not proposing that there is a well defined UV point for the CFT

perturbed by irrelevant operators. If such a theory existed, it would be dual to asymptotically flat string

theory. Instead we are treating the theory living on the branes as an effective field theory near the IR fixed

point and consider Wilsonian RG flow towards the IR. We find that it is very constrained since there are

only a finite number of irrelevant operators allowed by the symmetries. We claim that this self-consistent

flow to the fixed point should be related to the attractor flow.
32It would be very interesting to study 4-dimensional black holes in N = 2 supergravity, where the

attractor mechanism has a richer structure. In this case the near horizon geometry of an extremal black

hole is AdS2×S2. Unfortunately, the field theory side is not well understood. In general we would expect a

0 + 1 dimensional theory which would flow in the ’IR’ to some kind of superconformal quantum mechanics,

leading to an AdS2/CFT1 duality. Since the precise meaning of the latter is still mysterious, even at the

fixed point, it seems difficult to study the flow towards the fixed point with present technology.
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For a given charge vector Γ and given position on the moduli space we decompose

Γ = Γ+ + Γ− where Γ± ∈ V±. It can be shown that the central charge, or tension, of the

black string is

Z(Γ, z) = |Γ+| (7.10)

Taking into account that

|Γ|2 = |Γ+|2 − |Γ−|2 (7.11)

is independent of the moduli z, we see that |Z| is minimized when Γ− = 0. This is

equivalent to the set of positive 5-planes containing the vector Γ. It is not difficult to see

that this attractor submanifold has locally the structure of the coset

M∗,Γ
sugra =

SO(4, 21)

SO(4) × SO(21)
(7.12)

The precise way in which this submanifold is embedded in the bigger space (7.9) depends

on the charge vector Γ and can be easily determined using for example the analysis of [16].

The theory living on the branes is a 2-dimensional effective field theory, which flows

in the IR to a 2d CFT with N = (4, 4) supersymmetry. The supergravity attractor flow

towards the AdS3 throat should be dual to an RG flow of a 2d effective field theory towards

a 2d CFT in the IR, at least near the fixed point. In other words, the theory on the brane,

seen as an effective low energy theory, is a 2d CFT perturbed by irrelevant operators. The

RG flow of this theory should be dual to the attractor flow in supergravity.

As we explained in the previous subsection, if we want to check this correspondence

to first order we have to check three conditions. The fact that the moduli spaces in the IR

are the same is a well known result [16], where we recognize that the space (7.12) is of the

general form of the moduli space of N = (4, 4) superconformal field theories (5.6). So the

condition (7.7) is satisfied.

Let us now consider the second condition, which is the matching of the fixed moduli to

the irrelevant operators which preserve the supersymmetry and R-symmetry. We want to

perturb the CFT by irrelevant operators which do not break the N = (4, 4) supersymmetry,

but only the conformal invariance. Also we do not want to break the SO(4)R symmetry,

which corresponds to the spherical symmetry around the black string. This question was

discussed in [45, 46]. With these restrictions, as we explained in section 5.3 using the

representation theory of the N = (4, 4) algebra, the only candidate irrelevant operators are

the descendants of chiral primaries φI of charge (1, 1). By acting with two supercurrents

on each side we get SO(4)R neutral operators of conformal dimension (2, 2) of the form

ΦI = G−+
−1/2G

−−
−1/2G

−+
−1/2G

−−
−1/2 · φI (7.13)

These are the only irrelevant operators preserving the N = (4, 4) structure and which are

SO(4)R singlets. In the notation of section 6.9 they can be written as

20× α
(1,1)
−2 |N − 2〉 and 1× α

(0,0)
−3 |N − 3〉 and 1× α

(2,2)
−1 |N − 1〉 . (7.14)

The fact that the single-particle operators of this form are in one-to-one correspondence

with the fixed moduli was already noted in [38]. There are 21+1 of them corresponding to
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the 21 fixed moduli of supergravity and the size of the 3-sphere. It is easy to check that

the relation between masses and conformal dimension is correct.

These irrelevant operators are sections of a vector bundle as described in section 3. At

the same time they describe motion away from the moduli space of conformal field theories

MCFT into the bigger space MQFT of N = (4, 4) quantum field theories. In this sense

the bundle of the operators (7.14) is isomorphic the normal bundle NCFT of MCFT inside

MQFT. The connection on this bundle can be determined by the results of the previous

sections about the connection for the chiral primaries φ and the supercurrents. It is not

difficult to see that we have the following result

NCFT = V21 ⊕ V1 (7.15)

Now from the supergravity side we have to compute the normal bundle of (7.12) inside (7.9).

It is easy to see that it is exactly the same bundle V21. If we add to it one more direction

corresponding to increasing the size of the 3-sphere we have

Nsugra = V21 ⊕ V1 (7.16)

So we find precise agreement between the two normal bundles, showing that the last con-

dition (7.8) is also satisfied.33 This shows that to first order away from the fixed point the

attractor flow agrees with RG-flow on the boundary.

7.4 Finite flows

A natural question is whether we can extend the previous arguments to higher orders in

perturbation theory towards the UV. As we explained before it is hard to give a precise UV

completion of the CFT perturbed by irrelevant operators, which is related to the absence

of decoupling between open and closed strings away from the α′ → 0 limit. Despite these

problems let us describe briefly what the full attractor flow for the D1/D5 system looks

like on the supergravity side. These solutions where discussed in detail in [47].

The metric has the form

ds2 = e2U(r)(−dt2 + dx2) + e−2U(r)(dr2 + r2dΩ2
3) (7.17)

We take the moduli at infinity to be at a general point z∞ ∈ Msugra, which corresponds

to a specific orientation of the positive 5-plane V∞
+ inside the space R

5,21. We also choose

a charge vector Γ, which does not generally lie inside V∞
+ . As we move towards the black

string the orientation of the 5-plane will change and at the attractor point it will be such

that Γ ∈ V ∗
+. To fully specify the solution we need to determine the function U(r) and the

orientation of the 5-plane as a function of the radius V+(r).

It turns out that the solutions are very simple. We decompose the charge vector Γ into

its projections on the positive and negative subspaces at infinity which gives two vectors

Γ∞
± ∈ R

5,21. These two vectors define a fixed 2-plane K inside R
5,21. Now, the radial

33We should emphasize that the agreement between equations (7.15),(7.16) does not only refer to the

rank of the bundles but to the full geometry of the bundle over the moduli space.
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dependence of the orientation of the 5-plane V+(r) is given the action of an SO(5, 21)

boost BK(ψ) along the constant 2-plane K, which is rotating the Γ− component into the

Γ+ and with r-dependent rapidity ψ(r). So we have

V+(r) = BK(ψ) · V∞
+ (7.18)

where at infinity we must have ψ(∞) = 0 to satisfy the boundary conditions, while near

the horizon ψ must take a value such that Γ ∈ V+ to satisfy the attractor condition Γ− = 0.

All the information about the solution is contained in the two functions U(r) and ψ(r). In

units where the 6d Planck length is one, the two functions are

e−2U(r) =

(
1 +

|Γ∞
+ | − |Γ∞

− |
r2

)1/2 (
1 +

|Γ∞
+ | + |Γ∞

− |
r2

)1/2

eψ(r) =

√
|Γ∞

+ | − |Γ∞
− | + r2

|Γ∞
+ | + |Γ∞

− | + r2

(7.19)

From these one can reconstruct the full solution, including the radial dependence of Γ±(r)

and of the 3-form field strengths following the detailed analysis in [47]. As an easy check

we can see that the ADM mass of this solution is indeed proportional to |Γ∞
+ | as expected

from (7.10), while in the near horizon region we get an AdS3 throat of size proportional to

|Γ| =
√

|Γ∞
+ |2 − |Γ∞

− |2, which is independent of the value of the moduli at infinity.

Notice that the motion on the moduli space Msugra from z∞ to z∗ ∈ M∗,Γ
sugra is rather

simple and given by the action of a one-parameter group of SO(5, 21) Lorentz boosts along

a constant 2-plane (7.18). We take the simplicity of the solution as an indication that the

corresponding RG-flow, appropriately interpreted, at finite scales might be also simple.

One approach would be to try to apply tt∗ inspired arguments away from the conformal

point. As we saw, the set of irrelevant operators preserving the N = (4, 4) supersymmetry

is finite, so it is not totally inconceivable that by generalizing the tt∗ formalism we might

be able to find RG-flow orbits in this restricted subset of parameters. Ideally we would like

to reproduce the full moduli space (7.9) from the perturbed N = (4, 4) and the attractor

flows described above. The tt∗ formalism has already been used in theories away from

criticality. The reason that we cannot apply the standard tt∗ arguments directly to our

system is that the irrelevant operators that we are perturbing by are of the form (7.13).

The tt∗ formalism is based on the N = (2, 2) algebra. From an N = (2, 2) point of view, the

operators (7.13) are not F-term perturbations, since they involve too many supercurrents,

which are not visible in a single N = (2, 2) subalgebra, and naively should not be protected.

It is the underlying N = (4, 4) which protects these operators. It would be very interesting

to generalize the tt∗ framework for perturbations of this form in N = (4, 4) theories.

Another way to study finite flows away from the conformal fixed point would be to go

to higher orders in conformal perturbation theory. Since we have included all irrelevant

operators that preserve N = (4, 4) supersymmetry, in a scheme in which these supersym-

metries are preserved no further irrelevant operators should be generated in the effective

action, as these would necessarily break some of the supersymmetries. Therefore, in such

a scheme all the conformal perturbation theory would do is to generate a non-trivial scale
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dependence of the irrelevant couplings. One can imagine that the latter may eventually be

related to the rather simple form of the flow solution (7.19) and it would be interesting to

explore this further.

7.5 A decoupling limit and 6d gauge theory

Finally, let us mention that certain orbits of the attractor flow can be embedded in a bound-

ary theory with an honest decoupling limit in the following way, which was also described

in [48]. Consider IIB compactified on K3 of volume VK3 = vα′2 with v dimensionless, and

a bound state of D1/D5 branes. The D1/D5 solution is

ds2 = Z
−1/2
1 Z

−1/2
5 (−dt2 + dx2) + Z

1/2
1 Z

1/2
5 (dr2 + r2dΩ2

3) + Z
1/2
1 Z

−1/2
5

√
vα′ds2K3

e2φ = g2
sZ1Z

−1
5

Z1 = 1 +
gsQ1α

′/v

r2

Z5 = 1 +
gsQ5α

′

r2

(7.20)

where ds2K3 is the metric of a K3 of unit volume. The standard decoupling limit which

leads to AdS3/CFT2 is α′ → 0 keeping gs, v constant. Instead we consider the decoupling

limit corresponding to a D5 brane in flat space

α′ → 0, gsα
′ = g2

YM = const, VK3 = vα′2 = const, U =
r

α′
= const. (7.21)

In this limit we do have a decoupling of the open and closed modes. Also, the +1 drops

out of the harmonic function Z5 but not Z1

Z1 = 1 +
g2
YM/VK3

U2
, Z5 ≃ g2

YMQ5

α′2U2
. (7.22)

The decoupled supergravity solution takes the form

ds2

α′
=

U√
g2
YMQ5

Z
−1/2
1 (−dt2 + dx2)

+

√
g2
YMQ5Z

1/2
1

U
(dU2 + U2dΩ2

3) +
U√
g2
YMQ5

Z
1/2
1

√
VK3ds

2
K3,

e2φ =
g2
YMU

2

Q5
Z1.

(7.23)

It is easy to see that this is asymptotically locally the same as the decoupling limit of the

D5 brane in flat space, but the global structure is R
1,1 × K3. The dilaton blows up at

infinity but we can S-dualize to the NS5 brane solution which is well behaved there. As

we move towards the IR the size of the K3 shrinks and reaches a stringy size fixed by the

attractor mechanism, while the rest of the geometry becomes AdS3× S3. From the point

of view of our general solution (7.19) this corresponds to scaling Γ∞
± → ∞ in such a way
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that the +1 in the second harmonic function in the expression for e−2U(r) can be dropped

but not in the first.

Holographically in the UV we start with the 5+1 dimensional NS5 brane (1, 1) little

string theory living on R
1,1 × K3. Below energy scales of the order (gYM)−1 the theory

can be well described by 5+1 SYM on R
1,1 × K3. At energies below (VK3)

−1/4 we can

integrate out the K3 modes and end up with the 2-dimensional D1/D5 SCFT in the IR.

Along this RG-flow between a 5+1 and a 1+1 theory the scalar moduli flow and get fixed

values by the attractor mechanism. So in principle the RG flow between 5+1 dimensional

SYM on R
1,1 ×K3 and the 2d CFT in the IR should contain a holographic description of

the attractor mechanism for this simple system, at least for some attractor flows. This is

hard to study in general but it would be intersecting to see if it is possible to truncate the

RG-flow to the BPS sector of the system, by identifying the operators in the gauge theory

which flow to the chiral primaries in the IR and studying the supersymmetric sector of the

RG-flow. We identified the corresponding operators in section 6.10 but leave the study of

the boundary RG-flow for future work.

8 Black hole Berry phase

Finally we would like to mention one more application of our analysis. We have computed

the connection for the chiral primary operators in the NS sector of the N = (4, 4) D1/D5

SCFT. By spectral flow the chiral primaries are related to Ramond ground states. This

means that we know the exact connection for the vector bundle of Ramond ground states

over the moduli space of the theory. In spacetime the Ramond ground states correspond

to quantum microstates of a bound state of D1 and D5 branes, wrapped around S1 ×K3,

which is a small black hole in 5d. The connection on the bundle of chiral primaries is telling

us how different microstates of the black hole mix as we move on the moduli space. This is

is a version of the (nonabelian) Berry phase [49, 50] for the internal states of the black hole,

under adiabatic change of the moduli of the compactification. In principle, this exactly

computable holonomy would allow one to set up interference experiments sensitive to the

internal microstate of the black hole. Obviously preparing a black hole in a pure state in

practice would be highly challenging. It would be interesting to explore the implications

of this phenomenon in more detail, we hope to report on it in the future.

Other systems in string theory where Berry’s phase appears and has interesting inter-

pretation have been studied recently [51–53].

9 Summary and further directions

The main technical point of this paper was the analysis of the moduli dependence of the

chiral ring for N = (4, 4) superconformal field theories. It was based on an application

of the tt∗ equations which we derived34 from general principles of conformal perturbation

theory and not relying on the topological twisting. This derivation clarifies the connection

between the work based on topological-antitopological fusion [3, 4] and that on standard

34Of course the original derivation is more general, it also works for non-conformal N = (2, 2) theories.
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CFT arguments [25, 26]. The main result is that for N = (4, 4) theories the chiral ring is

covariantly constant over the moduli space. We found that the bundles of chiral primaries

are constrained to be homogeneous bundles, whose curvature is exactly computable.

In the case of AdS3/CFT2 our results imply a non-renormalization theorem for 3-point

functions of chiral primaries and more general extremal correlators, even at finite values

of N . This explains the agreement found in [5–8]. To gain a better understanding of the

relation between different points on the moduli space it would be useful to clarify the global

structure of the moduli space of the SCFT and possible monodromies of the chiral ring

around singularities.

The connection for the chiral primaries that we computed in this paper can be used

to demonstrate agreement between the attractor flow and RG-flow in the vicinity of the

fixed point, in the simple case of an infinite D1/D5 black string. It would be interesting

to extend this analysis to finite order away from the fixed point, for example under the

flow by the irrelevant operators mentioned in the text which do not break the N = (4, 4)

supersymmetry. This is a finite set of operators so it might be possible to find constrained

self-consistent flows towards the UV related to the attractor flows in supergravity. In

particular, since we are in a certain sense studying the BPS sector of the theory, we might

hope to reconstruct the full geometry of the supergravity moduli space (7.9) from the

geometry of the field theory moduli space away from criticality.

An obvious generalization would be to set up a similar analysis for systems with less

supersymmetry. One example is the N = (0, 4) MSW superconformal field theory which

appears on the worldvolume of an M5 brane wrapping a four-cycle in a Calabi-Yau mani-

fold [17]. The five-dimensional supergravity solution has an AdS3×S2 near horizon geom-

etry and has a more interesting attractor flow towards the fixed point. One could try to

identify the constraints from supersymmetry on the structure of the moduli spaces and the

chiral ring. Moreover, this theory has a very interesting set of supergravity solutions [54]

corresponding to multi-centered black holes which can be constructed by perturbing the

theory towards the IR. It would be nice to see if the structure found from supergravity can

be reproduced in any sense from the RG-flow in the boundary theory.

Four-dimensional black holes in N = 2 supergravity provide another interesting exam-

ple where a suitable extension of our results might be obtainable. In this case the theory

on the branes should flow to “superconformal quantum mechanics” which would be the

boundary side of AdS2/CFT1. This conjectured duality has not been fully understood so

it is not straightforward to make progress in this direction.

It would also be interesting to understand how to formulate the computation of Berry’s

phase for the microstates of other supersymmetric black holes. Again the N = 2 4d case

would be most interesting, but difficult for the reasons mentioned in the previous paragraph.

It might be interesting to see if anything can be said about states in the D1-D5 system

which are of the form chiral primary-anything, corresponding to D1-D5-P microstates. It

is not clear if the holonomy for such states is sufficiently constrained by supersymmetry,

but as these would correspond to microstates of a 5d black hole with a macroscopic horizon

they are worthwhile to investigate.

Finally let us mention another direction which might be interesting to explore further.
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While the connection for chiral primaries over the moduli space has been studied in detail

for the case of 2d superconformal field theories, the same analysis has not been performed

for their higher dimensional analogues. More precisely, one could try to study the connec-

tion for the operators in the chiral ring of 4d superconformal gauge theories. In particular

it would be interesting to see if there is any way of deriving equations similar to tt∗ for 4

dimensional theories, expressing the curvature of the bundle of chiral primaries in terms of

the chiral ring coefficients. If such relations exist, they may lead to interesting constraints

for the Kähler metric on the moduli space of N = 1 SCFTs and they may be useful for

the analysis of aspects of Seiberg duality in N = 1 theories.

Let us close with a simple observation in this direction. Consider four dimensional N =

4 SU(N) SYM at the superconformal point, whose R-symmetry is SO(6). This theory is not

an isolated conformal field theory since we can continuously vary the coupling τ = θ
2π + 4πi

g2
YM

without breaking conformal invariance. Its moduli space M is the upper half-plane modded

out by the action of a certain subgroup of the SL(2,Z) duality group. Operators in short

representations can be constructed starting with a holomorphic combination of two of the

six real scalars of the theory, say Z = Φ1 + iΦ2, and then considering operators of the

form TrZp and their products. By acting on these operators with the supercharges and

momentum generators we can construct the full superconformal multiplet. Motion along

M is generated by marginal operators which in four dimensions have conformal dimension

4. In N = 4 these marginal operators can be written as descendants of chiral primaries in

the form

O = Q4TrZ2 (9.1)

This is a complex operator whose real and imaginary parts express the coupling of the

Lagrangian density to 1
g2
YM

and θ respectively. In components

O ∼ Tr(F 2
µν) + iTr(F ∧ F ) + . . . (9.2)

The metric on the moduli space M is given by the following expression

ds2 = gττdτdτ ∼ 1

(Imτ)2
dτdτ (9.3)

and is related to the 2-point function

〈O(x)O(y)〉 =
gττ

|x− y|8 (9.4)

The important point is that this metric is not flat. Hence the tangent bundle T M has

nonzero curvature. The marginal operators (9.1) correspond to tangent vectors on M.

Then under parallel transport on the moduli space the marginal operators will mix as

O → eiχO, O → e−iχO (9.5)

where the angle χ is exactly computable from the geometry of the moduli space (9.3).

From (9.1) we see that the marginal operators are sections of a bundle which is the tensor

product of the bundle of the supercharges and the bundle whose fiber is generated by
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the chiral primary TrZ2. As in the two-dimensional case, we expect that the SO(6) R-

symmetry is covariantly constant over the moduli space M. Then the chiral primary TrZ2

cannot get a phase under parallel transport. Thus we learn that the phase (9.5) is coming

from a mixing of the supercharges which corresponds to a rotation under the U(1) outer

automorphism of the N = 4 algebra in 4d.35 This mixing is exactly computable at all

values of the coupling from the geometry of the moduli space. In this case it seems that

we only have curvature for the supercharges and not the chiral primaries.36

It would be interesting to explore the constraints from supersymmetry on the geometry

of the chiral ring over the moduli space for other four dimensional superconformal field

theories, with less supersymmetry or for other operators in short multiplets such as the

1/16 BPS operators in N = 4.
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A The superconformal algebra

A.1 The N = 2 superconformal algebra

The N = 2 algebra has the form

T (z)T (w) =
c/2

(z −w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . .

J(z)J(w) =
c/3

(z −w)2
+ . . .

T (z)J(w) =
J(w)

(z −w)2
+
∂J(w)

z − w
+ . . .

G+(z)G−(w) =
2c/3

(z −w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂J(w)

z −w
+ . . .

T (z)G±(w) =
3

2

G±(w)

(z − w)2
+
∂G±(w)

z − w
+ . . .

J(z)G±(w) = ±G
±(w)

z − w
+ . . .

(A.1)

35This is the U(1)Y “bonus symmetry” discussed in [9].
36We do however have curvature for the descendants of the chiral primaries due to the curvature of the

supercharges.
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and

T † = T, J† = J, (G±)† = G∓ (A.2)

We define the modes

Ln =
1

2πi

∮
zn+1T (z)dz

G±
r =

1

2πi

∮
zr+1/2G±(z)dz

Jn =
1

2πi

∮
znJ(z)dz

(A.3)

and we have the commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0

[Jm, Jn] =
c

3
mδm+n,0

[Lm, Jn] = −nJm+n

{G−
r , G

+
s } = 2Lr+s − (r − s)Jr+s +

c

3
(r2 − 1/4) δr+s,0

{G+
r , G

+
s } = {G−

r , G
−
s } = 0

[Lm, G
±
r ] = (m/2 − r)G±

m+r

[Jm, G
±
r ] = ±G±

m+r

(A.4)

where r, s is half-integer in the NS sector and integer in the R sector, and have the following

hermiticity conditions

(Lm)† = L−m, (Jm)† = J−m, (G±
r )† = G∓

−r (A.5)

A.2 The N = 4 superconformal algebra

In the small N = 4 algebra the bosonic currents are T (z), J i(z), i = 1, 2, 3 and the super-

currents G±+(z) and G±−(z). The central charge and the level are related by c = 6k. The

algebra has the following form

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . .

J i(z)Jj(w) =
k

2

δij

(z − w)2
+ iǫijk

Jk(w)

z − w
+ . . .

T (z)J i(w) =
J i(w)

(z − w)2
+
∂J i(w)

z − w
+ . . .

T (z)Gab(w) =
3

2

Gab(w)

(z − w)2
+
∂Gab(w)

z − w
+ . . .

J i(z)Ga±(w) =
1

2
σiba

Gb±(w)

(z −w)
+ . . .

(A.6)
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and

Ga+(z)(Gb+)†(w) =
2c

3

δab
(z − w)3

+
4σiabJ

i

(z − w)2
+

2T (w)δab
(z − w)

+
2σiab∂J

i

z − w
+ . . .

Ga+(z)Gb+(w) = regular

Ga−(z)Gb−(w) = regular

(A.7)

where a, b = +,− and σiab are the Pauli matrices. The hermiticity conditions of the

generators are

T † = T, (J i)† = J i, (G++)† = G−−, (G+−)† = −G−+ (A.8)

B Some useful OPEs for N = (2, 2)

Let us call φ a (cc) field of (L0, J0) = (h, q). We have the following OPEs

G+(z)φ(w) = regular

G−(z)φ(w) =
(G−

−1/2 · φ)(w)

z − w
+ . . .

T (z)φ(w) = h
φ(w)

(z − w)2
+
∂φ(w)

z −w
+ . . .

J(z)φ(w) = q
φ(w)

z −w
+ . . .

(B.1)

Using the algebra and that h = q/2 for a chiral primary we find

G+(z)(G−
−1/2

· φ)(w) = 2q
φ(w)

(z − w)2
+ 2

∂φ(w)

z − w
+ . . . (B.2)

For chiral primaries with (h, q) = (1/2, 1) this becomes

G+(z)(G−
−1/2 · φ)(w) = 2∂w

(
φ(w)

z − w

)
+ . . . (B.3)

C Curvature of supercurrents in N = (2, 2)

We have to study the 4-point function of the form (4.10). For definiteness we will consider

A = 〈Oi(x)Oj(y)G
+(z)G−(w)〉 (C.1)

As a function of z, A is holomorphic so it is determined by its singularity structure at

z = x, y,w. For this we need the OPEs of G+(z) with the other insertions. We have the

following results

G+(z)G−(w) =
2c/3

(z −w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂J(w)

z −w
+ . . .

G+(z)Oi(x) = ∂x

(
(G

−
−1/2 · φi)(x)
z − x

)
+ . . .

G+(z)Oj(y) = regular

(C.2)
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where we used Oi = 1
2G

−
−1/2G

−
−1/2 · φi, Oj = 1

2G
+
−1/2G

+
−1/2 · φj and the N = (2, 2) algebra.

So we have

A =〈Oi(x)Oj(y)

(
2c/3

(z − w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂J(w)

z − w

)
〉

+ ∂x

(
1

z − x
〈(G−

−1/2 · φi)(x)Oj(y)G
−(w)〉

) (C.3)

This is of the form A = A1 + A2 where each term corresponds to one of the lines in

the expression above. The term A1 can be easily evaluated by the usual conformal Ward

identities on the correlation function

〈Oi(x)Oj(y)〉 =
gij

|x− y|4 (C.4)

After some algebra we find

A1 =
2cgij

3|x− y|4(z − w)3
+

2gij
(w − x)2(w − y)2(x− y)2(z − w)

(C.5)

To compute A2 we need the correlation function

B = 〈(G−
−1/2 · φi)(x)Oj(y)G

−(w)〉 (C.6)

As a function of w the expression B is holomorphic, so again we can use the OPEs to

determine it. We have

B = ∂y

(
1

w − y
〈(G−

−1/2 · φi)(x)(G
+
−1/2 · φj(y)〉

)
− 2

w − x
〈Oi(x)Oj(y)〉 (C.7)

Now using

〈(G−
−1/2 · φi)(x)(G

+
−1/2 · φj(y)〉 = 2

gij
(x− y)(x− y)2

(C.8)

and expression (C.4) we find

B = −
2gij

(w − x)(w − y)2(x− y)2
(C.9)

so

A2 =
2gij(w − 2x+ z)

(w − x)2(w − y)2(x− y)2(x− z)2
(C.10)

Finally going back to (C.3) we can compute A = A1 +A2 and we find

A =
2cgij

3|x− y|4(z −w)3
+

2gij
(w − y)2(z − w)(x − z)2(x− y)2

(C.11)

Similarly we can compute the other 4-point functions needed for the computation of the

curvature of the supercurrents.
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D 4-point functions in N = (2, 2)

Consider a (cc) field φk and an (aa) φl. We want to simplify the 4-point function

G(x, y, z, w) = 〈Oi(x)Oj(y)φk(z)φl(w)〉 (D.1)

where the marginal operators are descendants of the chiral ring

Oi =
1

2
G−

−1/2G
−
−1/2 · φi, Oj =

1

2
G+

−1/2G
+
−1/2 · φj (D.2)

We can also write the operators as [32]

Oi(x) =
1

2

1

2πi

∮

x
ds
s− t

x− t
G−(s)

(
G

−
−1/2φi

)
(x) (D.3)

we choose t = z and we deform the contours. The supercurrent G−(s) annihilates φl and

it has a first order pole with φk(z) which is cancelled with the (s − z) in the numerator.

Finally we have to use the N = (2, 2) algebra to compute its OPE with the insertion at y.

We find that the answer is

G(x, y, z, w) =
1

2

∂

∂y

(
y − z

x− z
〈
(
G

−
−1/2φi

)
(x)
(
G

+
−1/2φj

)
(y)φk(z)φl(w)〉

)
(D.4)

Doing the same for the supercurrent G
+

we end up with the the following expression

G(x, y, z, w) = ∂y∂y

( |y − z|2
|x− z|2 〈φi(x)φj(y)φk(z)φl(w)〉

)
(D.5)

E OPE between chiral primary and antichiral primary

Consider (cc) field φi of charge qi > 0 and (aa) field φl of charge ql < 0 with qi < |ql|.
Consider their OPE

φi(z)φl(w) =
∑

rr

Dρ

il
Aρ(z)

(z − w)r(z − w)r
(E.1)

The field Aρ has U(1) charge qρ = qi + ql < 0, and conformal dimension hρ = hi + hl − r

(similarly for the right-moving side). From unitarity we have the condition hρ ≥ |qρ|/2.
Equivalently this means

r ≤ qi (E.2)

If the inequality is saturated (and similarly on the right moving side) the corresponding

field Aρ will be antichiral primary of charge qi + ql < 0. So the OPE will have the form

φi(z)φl(w) =
Dk
il
φk(w)

(z − w)qi(z − w)qi
+ . . . (E.3)

The coefficients Dk
il

are related to the chiral ring structure constants. We consider the

3-point function

〈φi(z)φl(w)φn(y)〉 (E.4)
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and take the OPE in two different ways to show that

Dk
il

= Cming
kngml (E.5)

So the conclusion is that the leading term of the OPE of (cc) with (aa) is given by the

conjugated chiral ring coefficients.

F Contours

Now we want to study the first term of (4.28) using the OPE between φi and φj . We define

C = − 1

(2π)2
lim
|r|→1

∫

|y|=1
dθ1

∫

|x|=r
dθ2

(
r2〈φi(x)φj(y)φk(∞)φl(0)〉 − 〈φj(x)φi(y)φk(∞)φl(0)〉

)

(F.1)

We change the angle variables to θ = (θ1+θ2)
2 and ψ = (θ1−θ2)

2 and we have

C = − 2

(2π)2
lim
|r|→1

∫
dθ

∫
dψ
(
r2〈φk(∞)φj(e

i(θ+ψ))φi(re
i(θ−ψ))φl(0)〉

− 〈φk(∞)φi(e
i(θ+ψ))φj(re

i(θ−ψ))φl(0)〉
) (F.2)

For ψ 6= 0 the contribution from ψ cancels with that from −ψ in the limit r → 1. However

this does not mean that the integral is zero, since we may have δ-function-like contributions

from ψ = 0. These contributions can be evaluated using the OPE of φi with φj which is

φi(z)φj(w) =
∑

ρ

Dρ

ij
Aρ(w)

(z −w)1−hρ(z − w)1−hρ

(F.3)

Let us assume that the operator Aρ has dimension (hρ, hρ− sρ) where sρ is the spin. Then

C = − 2

(2π)2
lim
r→1

∫
dθ

∫ +δ

−δ
dψ
∑

ρ

Dlρ,kD
ρ

ij

(z1 − z2)1−hρ(z1 − z2)1−hρ

(
(−1)sρ |z2|2

z
hρ

1 z
hρ

1

− 1

z
hρ

2 z
hρ

2

)

(F.4)

where z1 = ei(θ+ψ), z2 = rei(θ−ψ) and where δ is a small number that is kept constant as

ǫ→ 0. We can rewrite this as

C = − 2

(2π)2
lim
r→1

∫
dθ

∫ +δ

−δ
dψ
∑

ρ

Dlρ,kD
ρ

ij

|1 − re−2iψ|2−2hρ(1 − re2iψ)sρ

(
(−1)sρr2 − e2isρψ

rhρ+hρ

)

(F.5)

If Aρ is a spin zero field (hρ = hρ), then the contribution is proportional to

lim
r→1

∫ +δ

−δ
dψ

1

|1 − re−2iψ|2−2hρ

(
r2 − 1

r2hρ

)
(F.6)

One can show that this quantity37 is finite and δ independent if hρ = 0 and zero if hρ > 0.

Its value for hρ = 0 is

lim
r→1

∫ +δ

−δ
dψ

r2 − 1

|1 − re−2iψ|2 = −π (F.7)

37In fact, the integral in (F.4) can be explicitly evaluated for fixed r and with δ = π/2 in terms of

hypergeometric functions, but we will not present these expressions here.
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So from the spin zero fields only the identity operator will contribute to C a factor of

gijgkl (F.8)

Similarly we can show that from fields with nonzero spin, only (1, 0) and (0, 1) fields

contribute. For the first case we need

φi(z)φj(w) = . . . +
DJ
ij
J(w)

(z − w)
+ . . . (F.9)

The coefficient DJ
ij

can be easily computed using the Ward identities for J and we find

DJ
ij

=
3

c
gij (F.10)

where we used

〈J(0)J(∞)〉 =
c

3
, 〈φi(1)φj(0)J(∞)〉 = gij (F.11)

for fields φi, φj of charge +1,−1. Similarly

〈φl(0)J(1)φk(∞)〉 ≡ DlJ,k = −qgkl (F.12)

where q is the charge of φk. We also need the following value for the ψ integral for

hρ = sρ = 1

lim
r→1

∫ +δ

−δ
dψ

1

(1 − re2iψ)

(
−r2 − e2iψ

r

)
= −π (F.13)

So the contribution from the currents is equal to

− 3

c
(q + q)gijgkl (F.14)

All in all we get the following answer

C = gijgkl

(
1 − 3

c
(q + q)

)
(F.15)

G Current/Marginal operator OPE

Let us consider a chiral primary φ with h = j3 = 1/2 and h = j
3

= 1/2. The marginal

operator O(x) is the descendant of the chiral primary O(x) = G−k
−1/2G

−l
−1/2 ·φ(x). We want

to compute the OPE of a current with the marginal operator. In general it will be

J i(z)O(w) =
∑

m

(J imO)(w)

(z −w)m+1
(G.1)

So to compute the OPE we need to compute J im|O〉. We have

J im|O〉 = G
−l
−1/2

(
[J im, G

−k
−1/2] +G−k

−1/2J
i
m

)
|φ〉 (G.2)
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From the N = 4 algebra we have the following commutator of the modes

[J im, G
ak
r ] =

1

2
σibaG

bk
m+r (G.3)

For m = 0 we have J i0|O〉 = 0 since we already knew that |O〉 is uncharged under the

current algebra. For m > 0 the second term in (G.2) is zero because J im|φ〉 = 0, m > 0.

Also, from the commutators above we notice that the first term is proportional to a certain

linear combination of

Gcdm−1/2 (G.4)

If m > 0 all of these operators annihilate the sate |φ〉 because it is a primary, so finally

we have

J im|O〉 = 0, m ≥ 0 (G.5)

This proves that the OPE between the currents J i(z) and a marginal operator in N = (4, 4)

is completely regular.

There is in fact an alternative way to show this which does not rely on supersymme-

try. Consider an exactly marginal operator in any theory which contains a non-abelian

current algebra (which is preserved by the exactly marginal operator). The only singu-

lar terms in the OPE of a current with O arise from J i0|O〉 and J i+1|O〉. The first of

these clearly vanishes, since O cannot be charged under the non-abelian current algebra.

The second of these yields an operator of conformal weight (0, 1) which necessarily is an

anti-holomorphic current. These cannot carry any charge under the holomorphic current

algebra, whereas J i+1|O〉 clearly does, and therefore J i+1|O〉 = 0 and the OPE between J i

and O has to be regular. Notice that this argument is completely general but fails for

abelian current algebras.
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